

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	pythoncyc documentation

Welcome to pythoncyc’s documentation!

Contents:

	pythoncyc package
	Submodules

	pythoncyc.PGDB module

	pythoncyc.PTools module

	pythoncyc.PToolsFrame module

	pythoncyc.config module

	Module contents

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, SRI International.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	pythoncyc documentation

pythoncyc package

Submodules

pythoncyc.PGDB module

	
class pythoncyc.PGDB.PGDB(orgid)[source]

	Please consult the the tutorial.html file under the doc directory
for an introduction on how to use this class.

	
DNA_binding_sites_of_protein(tf, all_forms=None)[source]

	
	Description

	Given a transcription factor, return all of its DNA binding sites.

	Parms

	
	tf

	An instance of the class Proteins, a frame id or PFrame.

	all_forms

	Keyword, When True, then return the DNA binding
sites of modified forms and subunits of tf as well.

	Return value

	A list of instances of the class DNA-Binding-Sites.

	
activation_p(reg_frame)[source]

	
	Description

	A predicate that determines if a given regulation frame is
describing activation.

	Parms

	
	reg_frame

	An instance of class Regulation, a frame id or PFrame

	Return value

	A boolean value.

	
adjacent_genes_p(g1, g2)[source]

	
	Description

	Given two genes, this predicate will return True if they are on
the same replicon, and adjacent to one another.

	Parms

	
	g1

	An instance of class Genes, a frame id or PFrame.

	g2

	An instance of class Genes, a frame id or PFrame.

	Return value

	A boolean value.

	
all_cofactors()[source]

	
	Description

	Return a list of all cofactors used in the current PGDB.

	Parms

	None.

	Return value

	A list of cofactor frame ids.

	
all_direct_forms_of_protein(protein)[source]

	
	Description

	Given a protein, this function will return all of the directly
related proteins of its modified and unmodified forms, meaning
all of their direct subunits and all of their direct containers.

Parms

	protein

	An instance of the class Proteins, a frame id or PFrame.

	Return Value

	A list of instances of the class Proteins.

	
all_enzymes(type=None)[source]

	
	Description

	Return all enzymes of a given type.

	Parms

	
	type

	Keyword, A type as taken from the parameter to
fn enzyme. Defaults to ‘chemical-change’.

	Return value

	A list of instances of class Proteins.

	
all_forms_of_protein(protein)[source]

	
	Description

	Given a protein, this function will return all of the related
proteins of its modified and unmodified forms, meaning all of
their subunits and all of their containers. Unlike
all_direct_forms_of_protein, this function is not limited to
the direct containers only.

Parms

	protein

	An instance of the class Proteins, a frame id or PFrame.

	Return value

	A list of instances of the class Proteins.

	
all_genetic_regulation_proteins(allow_modified_forms=True, class_name=None)[source]

	
	Description

	Enumerates all proteins that are involved in genetic regulation
of a particular given class. Optionally, just unmodified forms
of the proteins are returned.

	Parms

	
	class_name

	Keyword, The class Regulation or a subclass.
It defaults to Regulation-of-Transcription-Initiation.

	allow_modified_forms

	Keyword, A boolean value. If True, modified and
unmodified forms of the protein are returned. If false, then
only unmodified forms of the proteins are returned. The
default value is True.

	Return value

	A list of protein frames that are involved in the specified form
of regulation.

	
all_modulators()[source]

	
	Description

	Enumerate all of the modulators, or direct regulators, in the
current PGDB.

	Parms

	None.

	Return value

	A list of regulator frame ids.

	
all_operons()[source]

	
	Description

	Enumerates all operons. In this case, an operon is defined as a
list of overlapping instances of Transcription-Units.

	Parms

	None.

	Return value

	A list of lists of Transcription-Units, where all
Transcription-Units in the list belong to the same operon.

	
all_pathways(selector='all', base=False)[source]

	
	Description

	Returns a list of pathway instance frames of a specified type.

	Parms

	
	selector

	Selects whether all pathways, or just
small-molecule metabolism base pathways. Can take either
‘all’ or ‘small-molecule’. Defaults to ‘all’.

	base

	If this boolean parameter is True, only includes
base pathways. Otherwise, all pathways, including
superpathways, will be returned.

	Return value

	A list of instances of class Pathways.

	
all_products_of_gene(gene)[source]

	
	Description

	Collects all proteins (not necessarily enzymes) that are encoded
by the given gene.

	Parms

	
	gene

	An instance of class Genes, a frame id or PFrame.

	Return value

	A list of instances of class Proteins.

	
all_protein_complexes(filter='all')[source]

	
	Description

	Enumerates different types of protein complexes.

	Parms

	
	filter

	Keyword, The type of protein complexes to return. The
argument must be one of the following values:

	‘all’

	Return all protein complexes.

	‘hetero’

	Return all heteromultimers.

	‘homo’

	Return all homomultimers.

	Return value

	A list of protein complex frame ids.

	
all_reactions(type='metab-smm')[source]

	

	
all_rxns(type='metab-smm')[source]

	
	Description

	Returns a set of reactions that fall within a particular category.

	Parms

	
	type

	The type of reaction to return. Defaults to
‘metab-smm’. The possible values are:

	‘all’

	All reactions.

	‘metab-pathways’

	All reactions found within metabolic pathways. Includes
reactions that are pathway holes. May include a handfull
of reactions whose substrates are macromolecules, e.g.,
ACP. Excludes transport reactions.

	‘metab-smm’

	All reactions of small molecule metabolism, whether or
not they are present in a pathway. Subsumes
metab-pathways.

	‘metab-all’

	All enzyme-catalyzed reactions. Subsumes metab-smm.

	‘enzyme’

	All enzyme-catalyzed reactions (i.e., instances of
either EC-Reactions class or Unclassified-Reactions class).

	‘transport’

	All transport reactions.

	‘small-molecule’

	All reactions whose substrates are all small molecules,
as opposed to macromolecules. Excludes transport reactions.

	‘protein-small-molecule-reaction’

	One of the substrates of the reaction is a
macromolecule, and one of the substrates of the reaction
is a small molecule.

	‘protein-reaction’

	All substrates of the reaction are proteins.

	‘trna-reaction’

	One of the substrates of the reaction is a tRNA.

	‘spontaneous’

	Spontaneous reactions.

	‘non-spontaneous’

	Non-spontaneous reactions that are likely to be enzyme
catalyzed. Some reactions will be returned for type
non-spontaneous that will not be returned by enzyme.

	Return value

	A list of reaction frame ids.

	
all_sigma_factors()[source]

	
	Description

	Enumerate all RNA polymerase sigma factors.

	Parms

	None.

	Return value

	A list of all instances of the class Sigma-Factors.

	
all_substrates(rxns)[source]

	
	Description

	Returns all unique substrates used in the reactions specified by
the parameter rxns.

	Parms

	
	rxns

	A list of reaction PFrames or frame ids.

	Return value

	A list of compound frame ids. There might be strings in the list,
as the left and right slots of a reaction frame can
contain strings.

	
all_transcription_factors(allow_modified_forms=True)[source]

	
	Description

	Enumerates all transcription factors, or just unmodified forms
of transcription factors.

	Parms

	
	allow_modified_forms

	Keyword, A boolean value. If True, modified and
unmodified forms of the protein are returned. If false, then
only unmodified forms of the proteins are returned. The
default value is t.

	Return value

	A list of protein frame ids that are transcription factors.

	
all_transported_chemicals(from_compartment=None, to_compartment=None, primary_only=False)[source]

	
	Description

	Enumerates all chemicals transported by transport reactions in
the current PGDB.

Parms

	from_compartment

	Keyword, The compartment that the chemical is
coming from (see Cellular Component Ontology).

	to_compartment

	Keyword, The compartment that the chemical is
going to (see Cellular Component Ontology).

	primary_only

	Keyword, If True, filter out common transport
compounds, such as protons and Na+.

	Return value

	A list of compound frame ids.

	
all_transporters()[source]

	
	Description

	Enumerate all transport proteins.

	Parms

	None.

	Return value

	A list of instances of class Proteins.

	
all_transporters_across(membranes=None, method=None)[source]

	
	Description

	Returns a list of transport proteins that transport across one
of the given membranes.

	Parms

	
	membranes

	Keyword, Either all or a list of instances of the class.
Defaults to all CCO-MEMBRANE.

	method

	Keyword,
Either ‘location’ or ‘reaction-compartments’. ‘location’
will check the locations slot, while
‘reaction-compartments’ will examine the compartments of
reaction substrates. Default value is ‘location’.

	Return value

	A list of instances of class Proteins.

	
autocatalytic_reactions_of_enzyme(protein)[source]

	
	Description

	Returns a list of reaction frames, where the protein
participates as a substrate of the reaction, and the reaction
has no associated Enzymatic Reaction frame. This implies that
the protein substrate of the reaction might autocatalyzing the
reaction.

	Parms

	
	protein

	An instance frame of class Proteins, a frame id or PFrame.

	Return value

	A list of instances of class Reactions.

	
base_components_of_protein(p, exclude_small_molecules=None)[source]

	
	Description

	Same as function monomers-of-protein, but also returns
components of the protein that are RNAs or compounds, not just
polypeptides.

Parms

	p

	An instance of the class Proteins, a frame id or PFrame.

	exclude_small_molecules

	Keyword, If nil, then small molecule components
are also returned. Default value is True.

	Return value

	Two values as a list. The first value is a list of the components, which
can be instances of the following classes: Polypeptides,
RNA, and Compounds. The second value is a list of the
corresponding coefficients of the components in the first value.

	
binding_site_promoters(tu)[source]

	
	Description

	Returns the promoters of the given DNA binding site.

	Parms

	
	tu

	An instance of the class DNA-Binding-Sites, a frame id or PFrame.

	Return value

	A list of instances of class Promoters.

	
binding_site_to_regulators(bsite)[source]

	
	Description

	Returns all of the transcription factors of the given binding site.

	Parms

	
	bsite

	An instance of class DNA-Binding-Sites, a frame id or PFrame.

	Return value

	A list of instances of class Proteins.

	
binding_site_transcription_units(promoter)[source]

	
	Description

	Returns all transcription units of a given binding site.

	Parms

	
	promoter, a frame id or PFrame.

	An instance of class DNA-Binding-Sites or
mRNA-Binding-Sites.

	Return value

	A list of instances of class Transcription-Units.

	
binding_sites_affecting_gene(gene)[source]

	
	Description

	Returns all binding sites which are present in the same
transcription units as the given gene.

	Parms

	
	gene

	An instance of the class Genes, a frame id or PFrame.

	Return value

	A list of instances of class DNA-Binding-Sites.

	
chromosome_of_gene(gene)[source]

	
	Description

	Returns the replicon on which the gene is located. If the gene
is located on a contig that is, in turn, part of a chromosome,
then the contig is returned.

	Parms

	
	gene

	An instance of class Genes, a frame id or PFrame.

	Return value

	An instance of class Genetic-Elements.

	
chromosome_of_object(item)[source]

	
	Description

	Given a frame object, the replicon where it is located is returned.
If there is no associated replicon for the object, nil is
returned. If the object is on more than one replicon, an error
is thrown.

	Parms

	
	item, a frame id or PFrame

	An instance of class All-Genes, Transcription-Units,
Promoters, Terminators, Misc-Features, or
DNA-Binding-Sites.

	Return value

	An instance of class Genetic-Elements.

	
chromosome_of_operon(tu)[source]

	
	Description

	Returns the replicon of the given transcription unit.

	Parms

	
	tu

	An instance of the class Transcription-Units, a frame id or PFrame.

	Return value

	An instance of class Genetic-Elements.

	
cofactors_and_pgroups_of_enzrxn(enzrxn)[source]

	
	Description

	Returns the cofactors and prosthetic groups of an enzymatic
reaction.

Parms

	enzrxn

	An instance of the class Enzymatic-Reactions, a frame id or PFrame.

	Return value

	A list of children of class Chemicals or strings,
representing cofactors and/or prosthetic groups.

	
compartment_of_rxn(rxn, default=None)[source]

	
	Description

	Returns the compartment of the reaction for non-transport
reactions.

	Parms

	
	rxn

	An instance of the class Reactions, that is, a frame id or PFrame.

	default

	Keyword, The default compartment for reactions without any
compartment annotations on their substrates. The default
value is CCO-CYTOSOL.

	Return value

	A child of the class CCO.

	
compartments_of_reaction(rxn, sides=None, default_compartment=None)[source]

	
	Description

	Returns the compartments associated with the given reaction.

	Parms

	
	rxn

	An instance of the class Reactions, a frame id or PFrame.

	sides

	Keyword, The slots of the reaction to consider.
The default value is (LEFT RIGHT).

	default_compartment

	Keyword,
The default compartment, as determined by the function
(default-compartment), which currently is set to
CCO-CYTOSOL.

	Return value

	A list of children of the class CCO.

	
complex_p(frame)[source]

	
	Description

	A predicate that determines whether the given frame is a
protein complex.

Parms

	frame

	a frame id or PFrame.

	Return value

	A boolean value.

	
compounds_of_pathway(pwy)[source]

	
	Description

	Return all substrates of all reactions that are within the given
pathway.

Parms

	pwy

	An instance of the class Pathways, a frame id or PFrame.

	Return value

	A list of children of class Compounds, children of class
Polymer-Segments, or strings.

	
containers_of(protein, exclude_self=None)[source]

	
	Description

	Return all complexes of which the given protein is a direct or
indirect component.

Parms

	protein

	An instance of the class Proteins, a frame id or PFrame.

	exclude_self

	Keyword, If True, then protein will not be included in
the return value.

	Return value

	A list of instances of the class Proteins.

	
containing_chromosome(site)[source]

	
	Description

	Given a site (whether a DNA binding site, a promoter, a gene, or
a terminator) along a transcription unit, return the
correspodning regulon.

	Parms

	
	site, a frame id or PFrame.

	An instance of class Transcription-Units,
mRNA-Binding-Sites, DNA-Binding-Sites,
Promoters, Genes, or Terminators.

	Return value

	An instance of class Genetic-Elements.

	
containing_tus(site)[source]

	
	Description

	Given a site (whether a DNA binding site, a promoter, a gene, or
a terminator) along a transcription unit, return the
correspodning transcription units.

	Parms

	
	site, a frame id or PFrame.

	An instance of class Transcription-Units,
mRNA-Binding-Sites, DNA-Binding-Sites,
Promoters, Genes, or Terminators.

	Return value

	A list of instances of class Transcription-Units.

	
cotranscribed_genes(gene)[source]

	
	Description

	Return all co-transcribed genes (i.e., genes which are a part of
one or more of the same transcription units) of the given gene.

	Parms

	
	gene

	An instance of class Genes, a frame id or PFrame

	Return value

	A list of instances of class Genes.

	
create_frame_objects(frameids)[source]

	Create all the required PFrames for the given frameids.
If a PFrame already exist for a frameid on the PGDB, reuse
that PFrame, otherwise create a PFrame. No data is transferred
from Pathway Tools.

	Parm

	frameids, list of frame ids (strings)

	Side-Effects

	self is modified to contain new PFrames indexed on new frameids

	Return

	list of PFrames

	
deactivated_or_inhibited_by_compound(cpds, mode=None, mechanisms=None, phys_relevant=None, slots=None)[source]

	
	Description

	Returns all pathways in which the given compound appears as a
substrate.

	Parms

	
	cpds

	An instance or list of instances of class Compounds, a frame id or PFrame.

	mode

	Keyword, Represents the type of regulation. Can
take on the values of “+”, “-”, or None.

	mechanisms

	Keyword, Keywords from the mechanism slot of
the corresponding sub-class of the class Regulation. If
True, only regulation objects with mechanisms in this
list will be explored for regulated objects.

	phys_relevant

	Keyword, If True, then only return inhibitors
that are associated with Regulation instances that have
the physiologically-relevant? slot set to True.

	slots

	Keyword, A list of enzymatic reaction slots.

	Return value

	A list of instances of class Enzymatic-Reactions.

	
direct_activators(item)[source]

	
	Description

	Return all activators that are connected to an activated object
by a single regulation object.

	Parms

	
	item

	A frame id or PFrame.

	Return value

	A list of frames that activate item.

	
direct_inhibitors(item)[source]

	
	Description

	Return all inhibitors that are connected to an inhibited object
by a single regulation object.

	Parms

	
	item

	A frame id or PFrame.

	Return value

	A list of frames that inhibit item.

	
direct_regulators(item, filter_fn=None)[source]

	
	Description

	Return all regulators that are connected to a regulated object
by a single regulation object.

	Parms

	
	item

	A frame id or PFrame.

	filter_fn

	Keyword, A predicate used to filter the regulation objects
used to find the regulators.

	Return value

	A list of frames that regulate item.

	
dna_binding_site_p(gene)[source]

	
	Description

	A predicate that determines if the given frame is an instance of
the class DNA-Binding-Sites.

	Parms

	
	gene

	A frame id or PFrame.

	Return value

	A boolean value.

	
enzrxn_activators(er, phys_relevant_only=None)[source]

	
	Description

	Returns the list of activators (generally small molecules) of
the enzymatic reaction frame.

Parms

	er

	An instance of the class Enzymatic-Reactions, a frame id or PFrame.

	phys_relevant_only

	Keyword, If True, then only return activators that are
associated with Regulation instances that have the
physiologically-relevant? slot set to True.

	Return value

	A list of children of the class Chemicals.

	
enzrxn_inhibitors(er, phys_relevant_only=None)[source]

	
	Description

	Returns the list of inhibitors (generally small molecules) of
the enzymatic reaction frame.

Parms

	er

	An instance of the class Enzymatic-Reactions, a frame id or PFrame.

	phys_relevant_only

	Keyword, If True, then only return inhibitors that are
associated with Regulation instances that have the
physiologically-relevant? slot set to True.

	Return value

	A list of children of the class Chemicals.

	
enzyme_activity_name(enzyme, reaction=None)[source]

	
	Description

	Computes the name of an enzyme in the context of a particular
reaction. If the reaction is not provided, then we return the
full enzyme name.

	Parms

	
	enzyme

	An instance of the class Proteins, that is, a frame id or a PFrame.

	reaction

	Keyword, An instance of the class Reactions.

	Return value

	A string.

	
enzyme_p(protein, type=None)[source]

	
	Description

	Predicate that determines whether a specified protein is an
enzyme or not.

Parms

	protein

	An instance of the class Proteins, a frame id or PFrame.

	type

	Keyword, Can take on one of the following values to select
more precisely what is meant by an “enzyme”:

	‘any’

	Any protein that catalyzes a reaction is considered an
enzyme.

	‘chemical-change’

	If the reactants and products of the catalyzed reactin
differ, and not just by their cellular location, then
the protein is considered an enzyme.

	‘small-molecule’

	If the reactants of the catalyzed reaction differ and
are small molecules, then the protein is considered an
enzyme.

	‘transport’

	If the protein catalyzes a transport reaction.

	‘non-transport’

	If the protein only catalyzes non-transport reactions.

	Return value

	A boolean value.

	
enzymes_of_gene(gene)[source]

	
	Description

	Collects all of the enzymes encoded by the given gene, including
modified forms and complexes in which it is a sub-component.

	Parms

	
	gene

	An instance of class Genes, a frame id or PFrame.

	Return value

	A list of instances of class Proteins.

	
enzymes_of_pathway(pwy, species=None, experimental_only=None, sorted=None)[source]

	
	Description

	Return all enzymes that are present in the given pathway.

Parms

	pwy

	An instance of the class Pathways, a frame id or PFrame.

	species

	Keyword, A list of species, such that in a
multi-organism PGDB such as MetaCyc, only proteins found in
those organisms will be returned. This list can include
valid org-ids, children of class Organisms, and
strings. Please see the documentation for the species
slot-unit for more information.

	experimental_only

	Keyword, When True, only return enzymes that have
a non-computational evidence code associated with it.

	sorted

	Keyword, If True, the enzymes are sorted in the
order in which the corresponding reaction occurrs in the
sequence of the pathway.

	Return value

	A list of children of class Proteins or class
Protein-RNA-Complexes.

	
enzymes_of_reaction(rxn, species=None, experimental_only=None, local_only=None)[source]

	
	Description

	Return the enzymes that catalyze a given reaction.

	Parms

	

	rxn

	An instance of the class Reactions, a frame id or PFrame.

	species

	Keyword, A list of species, such that in a
multi-organism PGDB such as MetaCyc, only proteins found in
those organisms will be returned. This list can include
valid org-ids, children of class Organisms, and
strings. Please see the documentation for the species
slot-unit for more information. Default value is nil.

	experimental_only

	
Keyword, When True, only return enzymes that have

a non-computational evidence code associated with it.

	local_only

	Keyword, When True, only return enzymes that
catalyze the specific form of the reaction, as opposed to
enzymes that are known to catalyze a more general form
(i.e., class) of the reaction.

	Return value

	A list of children of class Proteins or class
Protein-RNA-Complexes.

	
full_enzyme_name(enzyme, use_frame_name=None, name=None, activity_names=None)[source]

	
	Description

	Compute the full name of an enzyme as the concatenation of the
common name of the protein followed by the common names of its
enzymatic reactions. Note that two enzrxns for the same enzyme
could have the same common name, so we avoid including the same
name twice.

	Parms

	
	enzyme

	An instance of the class Proteins, that is, a frame id or a PFrame.

	use_frame_name

	Keyword, If True, then the frameid of the enzyme
instance is used in computing the enzyme name. Defaults to
True.

	name

	Keyword, A string that bypasses the function, and will be
returned as the value of the function.

	activity_names

	Keyword, A provided list of strings, that represent the
names of the known catalytic activities of enzyme.

	Return value

	A string.

	
gene_clusters(genes, max_gap=None)[source]

	
	Description

	Groups together genes based on whether each gene is a gene
neighbor with other genes.

	Parms

	
	genes

	A list of instances of class Genes, a frame id or PFrame.

	max_gap

	Keyword, An integer representing the number of genes any
pair from genes can be from one another. Default value is 10.

	Return value

	A list of lists, where the first element of each sub-list is a
gene from genes, and the rest of the list are all of the gene
neighbors of the first gene.

	
gene_p(item)[source]

	
	Description

	A predicate to determine if the given frame is a gene.

	Parms

	
	item

	a frame id or PFrame.

	Return value

	A boolean value.

	
gene_transcription_units(gene)[source]

	
	Description

	Given a gene, return all of the transcription units which
contain the gene.

	Parms

	
	gene

	An instance of class Genes, a frame id or PFrame

	Return value

	A list of instances of class Transcription-Units.

	
genes_in_same_operon(gene)[source]

	
	Description

	Given a gene, return all other genes in the same operon.

	Parms

	
	gene

	An instance of class Genes, a frame id or PFrame.

	Return value

	A list of instances of class Genes.

	
genes_of_pathway(pwy, sorted=None)[source]

	
	Description

	Return all genes coding for enzymes in the given pathway.

	Parms

	
	pwy

	An instance of the class Pathways, a frame id or PFrame.

	sorted?

	Keyword, If True, the genes are sorted in the
order in which the corresponding reaction occurrs in the
sequence of the pathway.

	Return value

	A list of instances of class Genes.

	
genes_of_protein(protein)[source]

	
	Description

	Given a protein, return the set of genes which encode all of the
monomers of the protein.

Parms

	protein

	An instance of the class Proteins, a frame id or PFrame.

	Return value

	A list of instances of the class Genes.

	
genes_of_proteins(protein)[source]

	
	Description

	The same as genes_of_protein, except that it takes a list of
proteins and returns a set of genes.

Parms

	protein

	A list of instances of the class Proteins, a frame id or PFrame.

	Return value

	A list of instances of the class Genes.

	
genes_of_reaction(rxn)[source]

	
	Description

	Return all genes that encode the enzymes of a given reaction.

	Parms

	
	rxn

	An instance of the class Reactions, a frame id or PFrame.

	Return value

	A list of instances of class Genes.

	
genes_regulated_by_gene(gene)[source]

	
	Description

	Return all genes regulated by the given gene by means of a
transcription factor.

	Parms

	
	gene

	An instance of the class Genes, a frame id or PFrame.

	Return value

	A list of instances of class Genes.

	
genes_regulated_by_protein(protein)[source]

	
	Description

	Return all of the genes for which the given protein, or its
modified form, acts as a regulator.

	Parms

	
	protein

	An instance of the class Proteins, a frame id or PFrame.

	Return value

	A list of instances of the class Genes.

	
genes_regulating_gene(gene)[source]

	
	Description

	Return all genes regulating the given gene by means of a
transcription factor.

	Parms

	
	gene

	An instance of the class Genes, a frame id or PFrame.

	Return value

	A list of instances of class Genes.

	
get_class_all_instances(className)[source]

	Get all instances of the given class name for this PGDB.
ClassName must be exactly as Pathway Tools expect the name of the class,
no conversion is applied.

	Parm

	className, a symbol specified as a string (e.g., ‘|Reactions|‘)

	Returns

	list of frameids

	
get_class_all_subs(classArg)[source]

	Get all subclasses of the given class name for this PGDB.
If classArg is a string, it must be exactly as Pathway Tools expect the name of the class,
no conversion is applied.

	Parm

	classArg, a symbol specified as a string (e.g., ‘|Reactions|‘) or as
a PFrame.

	Returns

	list of frameids corresponding to the subclasses of the classArg.

	
get_class_data(realClassName, getInstancesData=False)[source]

	Retrieve the class slots and their values, creating a PFrame for the class.
Retrieve also the list of instances from Pathway Tools and
create a PFrame for each instance. Store the list of PFrames
in attribute ‘instances’ of the class object. If getInstancesData is True,
get also all instances slots and their data.

	Parms

	realClassName, a string, the real name of the class to retrieve.
getInstancesData, boolean, True => get the slots and data of all instances.

	Returns

	A PFrame representing the class with all its slot names
as Python attributes.

	
get_frame_objects(frameids)[source]

	For each frame id of the list frameids, retrieve the slots
and their data. Reuse the PFrame of frameid if it already exist for this PGDB,
otherwise create one and attach it to this PGDB.

	Parm

	frameids, list of frame ids (strings).

	Return

	list of PFrames, one for each frame id.

	
get_major_classes()[source]

	Get from Pathway Tools the classes Reactions, Pathways, Genes,
Compounds, Proteins, and all their instances with their data.
This method is very time consuming has
several ten of thousands of frames need to be transferred
from Pathway Tools and the corresponding PFrames need to be created.

	
get_name_string(item, rxn_eqn_as_name=None, rxn_common_name_as_name=None, direction=None, name_slot=None, strip_html=None, include_species_strain_name=None, italicize_species=None, short_name=None, species_initials=None, primary_class=None)[source]

	
	Description

	Given an object, compute the string name. The method used to
compute the name varies per the object class.

	Parms

	
	item

	A frame id or PFrame.

	rxn_eqn_as_name

	Keyword, If True, then we use the reaction
equation in string form as the name of the reaction.
Defaults to True.

	rxn_common_name_as_name

	Keyword, If True, then we use the reaction’s
common name as the name of the reaction.

	direction

	Keyword, An argument of ‘l2r’ or ‘r2l’ can be
given to specify the desired reaction orientiation when
printed in reaction equation form. If this is not provided,
then the reaction direction will be determined using pathway
evidence.

	name_slot

	Keyword, The specified slotunit frame name, as a
symbol, will be used for extracting the name of the frame.

	strip_html

	Keyword, Remove any HTML mark-up from the string
form of the object name.

	include_species_strain_name

	Keyword, Provide proper italicization for the
organism strain name.

	italicize_species

	Keyword, Provide proper italicization for the
organism species name.

	short_name

	Keyword, If the ABBREV-NAME slot is populated
for the frame, then its value will be used.

	species_initials

	Keyword, Print the name of the organism as initials.

	primary_class

	Keyword, Specify explicitly the primary class of
the given frame. This can be used to override the internal
reasoning of this function, and you can give a suggestion to
the function to treat the frame as another class.

	Return value

	A string representing the name of the frame.

	
get_predecessors(rxn, pwy)[source]

	
	Description

	Return a list of all reactions that are direct predecessors
(i.e., occurr earlier in the pathway) of the given reaction in
the given pathway.

	Parms

	
	rxn

	An instance of the class Reactions, a frame id or PFrame.

	pwy

	A child of the class Pathways.

	Return value

	A list of instances of the class Reactions.

	
get_slot_value(frameid, slotName)[source]

	Return the single slot value of a frame object.
Parms

	frameid

	a string representing the unique identifier for a frame object.

	slotName

	a string representing the slot of the frame object.

	Example:

	
	To get the substrates participating on the left of reaction RXN-9000:

	get_slot_values(‘RXN-9000’, ‘LEFT’)

	
get_slot_values(frameid, slotName)[source]

	Return the slot values of a frame object.
Parms

	frameid

	a string representing the unique identifier for a frame object.

	slotName

	a string representing the slot of the frame object.

	Returns

	list of values of the given slot. Values can be frameids, booleans,
strings, or numbers.

	Example:

	
	To get the substrates participating on the left of reaction RXN-9000:

	meta.get_slot_values(‘RXN-9000’, ‘LEFT’)

where meta is a variable bound to a PGDB object.

	
get_successors(rxn, pwy)[source]

	
	Description

	Return a list of all reactions that are direct successors (i.e.,
occurr later in the pathway) of the given reaction in the given
pathway.

	Parms

	
	rxn

	An instance of the class Reactions, a frame id or PFrame.

	pwy

	A child of the class Pathways.

	Return value

	A list of instances of the class Reactions.

	
homomultimeric_containers_of(protein, exclude_self=None)[source]

	
	Description

	This function is the same as the function containers-of,
except that it only includes containers that are homomultimers.

Parms

	protein

	An instance of the class Proteins, a frame id or PFrame.

	exclude_self

	Keyword, If True, then protein will not be included in
the return value.

	Return value

	A list of instances of the class Proteins.

	
inhibition_p(reg_frame)[source]

	
	Description

	A predicate that determines if a given regulation frame is
describing inhibition.

	Parms

	
	reg_frame

	An instance of class Regulation, a frame id or PFrame

	Return value

	A boolean value.

	
is_a_class_name(className)[source]

	Verify that className is a known class in Pathway Tools.
Return the real name of that class because the className may have
been transformed by fn class-name-p to generate the closest real class name.

	Parm

	className, a string, the class name to verify.

	Return

	a string, either className itself, or modified by replacing
‘_’ to ‘-‘ or some case letters changed to match an existing class
name in Pathway Tools.

	
is_an_instance_name(frameid)[source]

	Similar to method is_a_class_name but for a frame that is not a class.
If frameid is a real frame id of an object of this PGDB, returns frameid as is.
If not, try to convert frameid to an exist frame id by transforming cases of
letters and underscores to dashes in frameid.

	Parm

	frameid, a string.

	Returns

	a string representing an existing frame id in the PGDB.

	
leader_peptide_p(protein)[source]

	
	Description

	A predicate that determines whether the given protein is a
leader peptide.

Parms

	protein

	An instance of the class Proteins, a frame id or PFrame.

	Return value

	A boolean value.

	
modified_and_unmodified_forms(protein)[source]

	
	Description

	Returns all of the modified and unmodified forms of the given
protein.

Parms

	protein

	An instance of the class Proteins, a frame id or PFrame.

	Return value

	A list of instances of the class Proteins.

	
modified_containers(protein)[source]

	
	Description

	Returns all containers of a protein (including itself), and all
modified forms of the containers.

Parms

	protein

	An instance of the class Proteins, a frame id or PFrame.

	Return value

	A list of instances of the class Proteins.

	
modified_forms(protein, exclude_self=None, all_variants=None)[source]

	
	Description

	Returns all modified forms of a protein.

Parms

	protein

	An instance of the class Proteins, a frame id or PFrame.

	exclude_self

	Keyword, If True, then protein will not be included in
the return value.

	all_variants

	Keyword, If True, and protein is a modified form, then
we return all of the modified forms of the unmodified forms
of protein.

	Return value

	A list of instances of the class Proteins.

	
monomers_of_protein(p, coefficients=None, unmodify=None)[source]

	
	Description

	Returns the monomers of the given protein complex.

Parms

	p

	An instance of the class Proteins, a frame id or PFrame.

	coefficients

	Keyword, If True, then the second return value of
the function will be a list of monomer coefficients.
Defaults to True.

	unmodify

	Keyword, If True, obtain the monomers of the
unmodified form of p.

	Return value

	First value is a list of instances of the class Proteins. If
coefficients? is True, then the second value is the
corresponding coefficients of the monomers fromthe first return
value.

	
neighboring_genes_p(g1, g2, n=None)[source]

	
	Description

	Given two genes, this predicate determines if the two genes are
“neighbors”, or within a certain number of genes from one
another along the replicon.

	Parms

	
	g1

	An instance of class Genes, a frame id or PFrame.

	g2

	An instance of class Genes, a frame id or PFrame.

	n

	Keyword, An integer representing the number of genes g1
and g2 can be from one another. Default value is 10.

	Return value

	A boolean value.

	
next_gene_on_replicon(gene)[source]

	
	Description

	Return the next gene on the replicon.

	Parms

	
	gene

	An instance of class Genes, a frame id or PFrame.

	Return value

	Returns two values as a list. The first value is the next gene, or nil if
there is not a next gene (i.e., the gene is at the end of a
linear replicon). The second value is ‘last’ if the gene is the
last gene on a linear replicon.

	
noncontiguous_pathway_p(pwy)[source]

	
	Description

	A predicate that determines if the pathway contains more than
one connected component. See function pathway-components for
more explanation.

Parms

	pwy

	An instance of the class Pathways, a frame id or PFrame.

	Return value

	A boolean value.

	
nonspecific_forms_of_rxn(rxn)[source]

	
	Description

	Return all of the generic forms of the given specific reaction.
Not every reaction will necessarily have a generic form.

	Parms

	
	rxn

	An instance of the class Reactions, that is, a frame id or PFrame.

	Return value

	A list of children of the class Reactions.

	
operon_of_gene(gene)[source]

	
	Description

	Given a gene, return a list of transcription units that form the
operon containing the gene.

	Parms

	
	gene

	An instance of class Genes, a frame id or PFrame

	Return value

	A list of instances of class Transcription-Units.

	
pathway_allows_enzrxn(pwy, rxn, enzrxn, single_species=None)[source]

	
	Description

	A predicate which returns a True value if the given pathway
allows the given enzymatic reaction to catalyze the given
reaction. Certain pathways have a list of enzymatic reactions
that are known not to catalyze certain reactions. See the
documentation of slot-unit enzyme-use for more information.

Parms

	pwy

	An instance of the class Pathways, a frame id or PFrame.

	rxn

	An instance of the class Reactions, a frame id or PFrame.

	enzrxn

	An instance of the class Enzymatic-Reactions, a frame id or PFrame.

	single_species

	Keyword, An instance of the class Organisms If set,
then enzrxn has the further stricture that it must be an
enzymatic reaction present in the organism specified by the
value passed to single-species.

	Return value

	A boolean value.

	
pathway_components(pwy, rxn_list=None, pred_list=None)[source]

	
	Description

	Returns all of the connected components of a pathway. A
connected component of a pathway is a set of reactions in the
pathway such that for all reactions R1 in the connected
component, a predecessor relationship holds between R1 and some
other reaction R2 in the connected component, and each connected
component is of maximal size. Every pathway will have from 1 to
N connected components, where N is the number of reactions in
the pathway. Most pathways have one connected component, but not
all.

Parms

	pwy, a frame id or PFrame.

	An instance of the class Pathways, which is not a
super-pathway (i.e., does not have any entries in its
sub-pathways slot).

	rxn_list

	Keyword, The list of reactions to use as the starting list
of connected component clusters. Defaults to
the content of slot reaction-list in pwy.

	pred_list

	Keyword, The list of reaction predecessors to iterate from
in order to cluster the reactions in rxn-list. Defaults to
list in slot predecessors of pwy.

	Return value

	Returns three values as a list: the connected components as a list of
lists of the form ((r1 r2 r3) (r4 r5) (r6 r7 r8)) where each
sub-list contains all reactions in one connected component, the
number of connected components, and the length of the reaction
list.

	
pathway_hole_p(rxn, hole_if_any_gene_without_position=None)[source]

	
	Description

	A predicate that determines if the current reaction is
considered to be a ‘pathway hole’, or without an associated enzyme.

	Parms

	
	rxn

	An instance of the class Reactions, a frame id or PFrame.

	hole_if_any_gene_without_position

	Keyword, If True, then genes without specified
coordinates for the current organism’s genome are not
counted when determining the status of the reaction.

	Return value

	A boolean value.

	
pathways_of_compound(cpd, non_specific_too=None, modulators=None, phys_relevant=None, include_rxns=None)[source]

	
	Description

	Returns all pathways in which the given compound appears as a
substrate.

	Parms

	
	cpd

	An instance of class Compounds, a frame id or PFrame.

	non-specific_too

	Keyword, If True, returns all generic
reactions where cpd, or a parent of cpd, appears as a
substrate.

	modulators

	Keyword, If True, returns pathways where cpd
appears as a regulator as well.

	phys-relevant

	Keyword, If True, then only return inhibitors
that are associated with Regulation instances that have
the physiologically-relevant? slot set to True.

	include-rxns

	Keyword, If True, then return a list of
reaction-pathway pairs.

	Return value

	A list of instances of class Pathways. If include-rxns? is
True, then a list of lists, where each sub-list consists of
an instance of class Reactions and an instance of class
Pathways.

	
pathways_of_enzrxn(enzrxn, include_super_pwys=None)[source]

	
	Description

	Returns the list of pathways in which the given enzymatic
reaction participates.

Parms

	enzrxn

	An instance of the class Enzymatic-Reactions, a frame id or PFrame.

	include_super_pwys

	Keyword, If True, then not only will the
direct pathways in which enzrxn is associated in be
returned, but also any enclosing super-pathways. If enzrxn
is associated with a reaction that is directly associated
with a super-pathway, then the function might return
super-pathways even if this option is nil.

	Return value

	A list of instances of class Pathways.

	
pathways_of_gene(gene, include_super_pwys=None)[source]

	
	Description

	Returns the pathways of enzymes encoded by the given gene.

	Parms

	
	gene

	An instance of class Genes, a frame id or PFrame.

	include_super_pwys

	Keyword, If True, then not only will the
direct pathways in which gene encodes an enzyme be
returned, but also any enclosing super-pathways. If gene
is associated with a reaction that is directly associated
with a super-pathway, then the function might return
super-pathways even if this option is nil.

	Return value

	A list of instances of class Pathways.

	
phantom_gene_p(gene)[source]

	
	Description

	A predicate that determines if the given gene is a phantom gene.

	Parms

	
	gene

	An instance of the class Genes, a frame id or PFrame.

	Return value

	A boolean value.

	
polypeptide_or_homomultimer_p(protein)[source]

	
	Description

	A predicate that determines if the given protein is a
polypeptide or a homomultimer.

Parms

	protein

	An instance of the class Proteins, a frame id or PFrame.

	Return value

	A boolean value.

	
previous_gene_on_replicon(gene)[source]

	
	Description

	Return the previous gene on the replicon.

	Parms

	
	gene

	An instance of class Genes, a frame id or PFrame.

	Return value

	Returns two values as a list. The first value is the previous gene, or nil
if there is not a previous gene (i.e., the gene is at the
beginning of a linear replicon). The second value is ‘first’ if
the gene is the first gene on a linear replicon.

	
promoter_binding_sites(promoter)[source]

	
	Description

	Returns all of the binding sites associated with the given
promoter, across multiple transcription units.

	Parms

	
	promoter

	An instance of class Promoters, a frame id or PFrame.

	Return value

	A list of instances of class DNA-Binding-Sites.

	
protein_coding_gene(gene)[source]

	
	Description

	A predicate that determines if the given gene encodes a protein
(as opposed to an RNA).

	Parms

	
	gene

	An instance of the class Genes, a frame id or PFrame.

	Return value

	A boolean value.

	
protein_in_compartment_p(rxn, compartments, default_ok=None, pwy=None, loose=None)[source]

	
	Description

	A predicate that checks if the given reaction is present in a
list of cellular compartments.

Parms

	rxn

	An instance of the class Reactions, a frame id or PFrame.

	compartments

	A list of cellular compartments, as defined in the Cellular
Components Ontology. See frame CCO.

	default_ok

	Keyword, If True, then we return True if the
reaction has no associated compartment information, or one
of its associated locations is a super-class of one of the
members of the compartments parameter.

	pwy

	Keyword, a frame id or PFrame. If supplied, the search for associated
enzymes of the parameter rxn is limited to the given child
of Pathways.

	loose

	Keyword, If True, then the compartments
CCO-CYTOPLASM and CCO-CYTOSOL are treated as being the
same compartment.

	Return value

	A boolean value.

	
protein_or_rna_containers_of(protein, exclude_self=None)[source]

	
	Description

	This function is the same as the function containers-of,
except that it only includes containers that are instances of
either class Protein-Complexes, or class
Protein-RNA-Complexes.

Parms

	protein

	An instance of the class Proteins, a frame id or PFrame.

	exclude_self

	Keyword, If True, then protein will not be included in
the return value.

	Return value

	A list of instances of the class Proteins.

	
protein_p(frame)[source]

	
	Description

	A predicate that determines whether the given frame is a protein.

Parms

	frame

	a frame id or PFrame.

	Return value

	A boolean value.

	
pseudo_gene_p(gene)[source]

	
	Description

	A predicate that determines if the given gene is a pseudo-gene.

	Parms

	
	gene

	An instance of the class Genes, a frame id or PFrame.

	Return value

	A boolean value.

	
put_slot_value(frameid, slotName, val)[source]

	Modify the slot value of a frame object with the given val. Val is a single
value (e.g., not a list).

	Important: The modified frame is not updated for any PFrame object that might has been

	previously loaded from that PGDB. This operation should be used only
for its effect on the PGDB in the running Pathway Tools application.

	Parms

	
	frameid

	a string representing the unique identifier for a frame object.

	slotName

	a string representing the slot of the frame object.

	val

	a value to store in the slot.

	Side-Effects

	The slot of that frame is replaced with the new value

	Returns

	Nothing

	Example:

	
	To put the Gibbs free energy of reaction RXN-9000:

	put_slot_value(‘RXN-9000’, ‘GIBBS-0’, 7.52)

	
put_slot_values(frameid, slotName, val)[source]

	Modify the slot values of a frame object with the given val. Val is typically
a list of objects.

	Important: The modified frame is not updated for any PFrame object that might has been

	previously loaded from that PGDB. This operation should be used only
for its effect on the PGDB in the running Pathway Tools application.

	Parms

	
	frameid

	a string representing the unique identifier for a frame object.

	slotName

	a string representing the slot of the frame object.

	val

	a value to store in the slot, typically a list of values or objects.

	Side-Effects

	The slot of that frame is replaced with the new value.

	Returns

	Nothing

	Example:

	
	To put the substrates participating on the left of reaction RXN-9000:

	put_slot_values(‘RXN-9000’, ‘LEFT’, [‘CPD-9459’,’CPD-9460’])

	
reaction_reactants_and_products(rxn, direction=None, pwy=None)[source]

	
	Description

	Return the reactants and products of a reaction, based on a
specified direction. The direction can be specified explicity or
by giving a pathway as an argument. It is an error to both
specify the pathway and the explicit direction. If neither an
explicit direction or a pathway is given as an argument, then
the direction is computationally inferred from available
evidence within the PGDB.

	Parms

	
	rxn

	An instance of the class Reactions, that is, a frame id or PFrame.

	direction

	Keyword, Can take on the following values:

	‘L2R’

	The reaction direction goes from ‘left to right’, as
described in the Reactions instance.

	‘R2L’

	The reaction direction goes from ‘right to left’; the
opposite of what is described in the Reactions
instance.

	pwy

	Keyword, An instance of the class Pathways, a frame id or PFrame.

	Return value

	Returns multiple values as a list. The first value is a list of reactants
as determined by the direction of the reaction, and the second
value is a list of the products as determined by the direction
of the reaction. Both lists have items that are children of
class Compounds, children of class Polymer-Segments, or
strings.

	
reaction_type(rxn)[source]

	
	Description

	Returns a keyword describing the type of reaction.

	Parms

	
	rxn

	An instance of the class Reactions, a frame id or PFrame.

	Return value

	A string from the following list:

	‘small-molecule’

	All substrates are small molecules, or small-molecule classes.

	‘transport’

	A substrate is marked with different compartment annotations
in the left and right slots.

	‘protein-small-molecule-reaction’

	At least one substrate is a protein and at least one is a
small molecule.

	‘protein-reaction’

	All substrates are proteins.

	‘trna-reaction’

	At least one substrate is a tRNA.

	‘null-reaction’

	No substrates or reactants are specified.

	‘other’

	None of the preceding cases apply.

	
reactions_of_compound(cpd, non_specific_too=None, transport_only=None, compartment=None, enzymatic=None)[source]

	
	Description

	Return all reactions in which the given compound participates as
a substrate.

	Parms

	
	cpd, a frame id or PFrame.

	A child of class Compounds.

	non_specific_too

	Keyword, If True, returns all generic
reactions where cpd, or a parent of cpd, appears as a
substrate.

	transport_only

	Keyword, If True, return only transport reactions.

	compartment

	Keyword, If True, return only reactions within
the specified compartment.

	enzymatic

	Keyword, If True, return only enzymatic reactions.

	Return value

	A list of children of class Reactions.

	
reactions_of_enzyme(protein, kb=None, include_specific_forms=None)[source]

	
	Description

	Return all of the reactions associated with a given protein via
enzymatic reactions.

Parms

	protein

	An instance of the class Proteins, a frame id or PFrame.

	kb

	Keyword, The KB object of the KB in which to find
the associated reactions. Defaults to self.

	include_specific_forms

	Keyword, When True, specific forms of associated
generic reactions are also returned. Default value is True.

	Return value

	A list of instances of the class Reactions.

	
reactions_of_gene(gene)[source]

	
	Description

	Returns all reactions catalyzed by enzymes encoded by the given
gene.

	Parms

	
	gene

	An instance of class Genes, a frame id or PFrame.

	Return value

	A list of instances of class Reactions.

	
reactions_of_protein(protein, check_protein_components=None, check_protein_containers=None)[source]

	
	Description

	Returns all of the associated reactions that the given protein,
or its components, catalyzes.

Parms

	protein

	An instance of the class Proteins, a frame id or PFrame.

	check_protein_components?

	Keyword, If True, check all components of this protein for
catalyzed reactions. Defaults to True.

	check_protein_containers?

	Keyword, If True, check the containers and modified forms
of the protein for catalyzed reactions.

	Return value

	A list of instances of class Reactions.

	
reduce_modified_proteins(prots, debind=None)[source]

	
	Description

	Given a list of proteins, the function converts all of the
proteins to their unmodified form, and then removes any
duplicates from the subsequent list.

Parms

	prots

	A list of instances of the class Proteins, a frame id or PFrame.

	debind

	Keyword, When True, the proteins are further
simplified by obtaining the unbound form of the protein, if
it is bound to a small molecule.

	Return Value

	A list of instances of the class Proteins.

	
regulation_frame_transcription_units(reg_frame)[source]

	
	Description

	Given a regulation object, return the transcription units when
one of the regulated entities is a promoter or terminator of the
transcription unit.

	Parms

	
	reg_frame

	An instance of the class Regulation-of-Transcription, a frame id or PFrame.

	Return value

	A list of instances of the class Transcription-Units.

	
regulator_of_type(protein, class_name)[source]

	
	Description

	A predicate that determines if the given protein is a regulator
of the specified class.

	Parms

	
	protein

	An instance frame of class Proteins, a frame id or PFrame.

	class

	A subclass of Regulation.

	Return value

	A boolean value.

	
regulator_proteins_of_transcription_unit(tu)[source]

	
	Description

	Returns all transcription factors that regulate the given
transcription unit.

	Parms

	
	tu

	An instance of the class Transcription-Units, a frame id or PFrame.

	Return value

	A list of instances of the class Proteins.

	
regulators_of_gene_transcription(gene, by_function=None)[source]

	
	Description

	Returns a list of proteins that are regulators of the given gene.

	Parms

	
	gene

	An instance of the class Genes, a frame id or PFrame.

	by_function

	Keyword, If True, then return two values: a list of
activator proteins and a list of inhibitor proteins.

	Return value

	A list of instances of class Proteins. If by_function is
True, then two values are returned. The first value is a list
of activator proteins, and the second value is a list of
inhibitor proteins.

	
regulators_of_operon_transcription(operon_list, by_function=None)[source]

	
	Description

	Returns a list of transcription factors of an operon.

	Parms

	
	operon_list

	A list of instances of the class Transcription-Units, a frame id or PFrame.

	by_function

	Keyword, If True, then return two values: a list of
activator proteins and a list of inhibitor proteins.

	Return value

	A list of instances of class Proteins. If the modified form
of the protein is the transcription factor, then that is the
protein returned.

	
regulon_of_protein(protein)[source]

	
	Description

	Returns all transcription units regulated by any form of the
given protein.

	Parms

	
	protein

	An instance frame of class Proteins, a frame id or PFrame.

	Return value

	A list of instances of the class Transcription-Units.

	
rna_coding_gene(gene)[source]

	
	Description

	A predicate that determines if the given gene encodes an RNA.

	Parms

	
	gene

	An instance of the class Genes, a frame id or PFrame.

	Return value

	A boolean value.

	
run_fba(fileName)[source]

	In PythonCyc there is a run_fba method defined globally in the pythoncyc
module and there is this version which is run under a specific PGDB.
Notice though that the FBA input file provided will decide which organism
is used for running FBA and may override this PGDB.

	Parms

	
	fileName, a string which is the name of the FBA input file on the

	running Pathway Tools machine.

	Returns

	
	A list with the following values:

	
	True <=> success, the FBA completed without error (for growth, see 5)

	List of error messages, if any

	List of output messages generated by MetaFlux (FBA module) during parsing
and execution

	The solver (SCIP) status symbol

	The flux of the objective biomass, non-zero if growth

	Number of growth cases if FBA input file is a knockout run,
or the number of active reactions if the FBA input file is solving a model

	The list of reactions that were in the model after instantiation

	The list of reactions that were active (non zero flux) with their fluxes

	
rxn_in_compartment_p(rxn, compartments, default_ok=None, pwy=None, loose=None)[source]

	
	Description

	A predicate that checks if the given reaction is present in a
list of cellular compartments.

	Parms

	
	rxn

	An instance of the class Reactions, a frame id or PFrame.

	compartments

	A list of cellular compartments, as defined in the Cellular
Components Ontology. See frame CCO.

	default_ok

	Keyword, If True, then we return True if the
reaction has no associated compartment information, or one
of its associated locations is a super-class of one of the
members of the compartments parameter.

	pwy

	Keyword, a frame id or PFrame.
If supplied, the search for associated
enzymes of the parameter rxn is limited to the given child
of Pathways.

	loose

	Keyword, boolean. If True, then the compartments
CCO-CYTOPLASM and CCO-CYTOSOL are treated as being the
same compartment.

	Return value

	A boolean value.

	
rxn_present_p(rxn)[source]

	
	Description

	A predicate that determines if there is evidence for the
occurrence of the given reaction in the current PGDB.

	Parms

	
	rxn

	An instance of the class Reactions, that is, a frame id or PFrame.

	Return value

	A boolean value.

	
rxn_specific_form_of_rxn_p(specific_rxn, generic_rxn)[source]

	
	Description

	A predicate that is True if the given generic reaction is a
generalized form of the given specific reaction.

	Parms

	
	specific_rxn

	A child of the class Reactions, that is, a frame id or PFrame.

	generic_rxn

	A child of the class Reactions, that is, a frame id or PFrame.

	Return value

	A boolean value.

	
rxn_w_isozymes_p(rxn)[source]

	
	Description

	A predicate that tests if a given reaction has any associated
isozymes (distinct proteins or protein classes that catalyze the
same reaction).

	Parms

	
	rxn

	An instance of the class Reactions, a frame id or PFrame.

	Return value

	A boolean value.

	
rxn_without_sequenced_enzyme_p(rxn, complete=None)[source]

	
	Description

	A predicate that tests if a given reaction has genes with no
associated sequence information.

	Parms

	
	rxn

	An instance of the class Reactions, that is, a frame id or PFrame.

	complete

	Keyword, if True, the predicate will return True when there
is any associated gene without a sequence. If False, the
predicate will return True when all associated genes are
without a sequence.

	Return value

	A boolean value.

	
rxns_adjacent_in_pwy_p(rxn1, rxn2, pwy)[source]

	
	Description

	A predicate to determine if two given reactions are adjacent to
one another in the given pathway.

Parms

	rxn1

	An instance of the class Reactions, a frame id or PFrame.

	rxn2

	An instance of the class Reactions, a frame id or PFrame.

	pwy

	An instance of the class Pathways, a frame id or PFrame.

	Return value

	A boolean value.

	
rxns_catalyzed_by_complex(rxns=None)[source]

	
	Description

	Enumerates all reactions catalyzed by an enzyme that is a
protein complex.

	Parms

	
	rxns

	Keyword, A list of instances of the class
Reactions. Defaults to the result of (all-rxns :enzyme).

	Return value

	A list of instances of the class Reactions with a protein
complex as an enzyme.

	
rxns_w_isozymes(rxns=None)[source]

	
	Description

	Enumerate all reactions that have isozymes (distinct proteins or
protein classes that catalyze the same reaction).

	Parms

	
	rxns

	Keyword, A list of instances of the class
Reactions. Defaults to the result of (all-rxns :enzyme).

	Return value

	A list of A list of instances of the class Reactions with
isozymes.

	
save_pgdb()[source]

	Save a PGDB that has been modified in the running Pathway Tools server.
The PGDB that will be saved is based on the orgid of this PGDB object.

	
sendPgdbFnCall(fn, *args, **kwargs)[source]

	Send a PGDB query to Pathway Tools based on function fn and arguments args and
kwargs (keyword args) and return the result. If multiple values are
returned by fn, the Pathway Tools Python server transforms them into a list.

	
sendPgdbFnCallBool(fn, *args, **kwargs)[source]

	Send a PGDB query to Pathway Tools that will return a Bool value.
This method takes care of translating no value or an empty list to False.

	
sendPgdbFnCallList(fn, *args, **kwargs)[source]

	Send a PGDB query to Pathway Tools that will return a List value.
This method takes care of translating no value or False to an empty list.

	
sendPgdbQuery(query)[source]

	Send a query for a specific PGDB using its orgid.
Use the macro with-organism for the Lisp Python server.

	Parm

	query, a string. That string should be acceptable to the Lisp Python server.

	Return

	the result (as a Python object) of the execution of the query in Pathway Tools.

	
small_molecule_cplxes_of_prot(protein)[source]

	
	Description

	Return all of the forms of the given protein that are complexes
with small molecules.

Parms

	protein

	An instance of the class Proteins, a frame id or PFrame.

	Return value

	A list of instances of the class Proteins.

	
species_of_protein(protein)[source]

	
	Description

	Get the associated species for the given protein.

Parms

	protein

	A list of instances of the class Proteins, a frame id or PFrame.

	Return value

	An instance of the class Organisms, or a string.

	
specific_forms_of_rxn(rxn)[source]

	
	Description

	Return all of the specific forms of the given generic reaction.
Not every reaction will necessarily have a specific form.

	Parms

	
	rxn

	A child of the class Reactions, that is, a frame id or PFrame.

	Return value

	A list of instances of the class Reactions.

	
substrate_of_generic_rxn(cpd, rxn)[source]

	
	Description

	A predicate that determines if a parent of the given compound is
a substrate of the given generic reaction.

	Parms

	
	cpd

	An instance of class Compounds, a frame id or PFrame.

	rxn

	An instance of class Reactions, a frame id or PFrame.

	Return value

	A boolean value.

	
substrates_of_pathway(pwy)[source]

	
	Description

	Bearing in mind the direction of all reactions within a pathway,
this function returns the substrates of the reactions in four
groups: a list of all reactant compounds (compounds occurring on
the left side of some reaction in the given pathway), the list
of proper reactants (the subset of reactants that are not also
products), a list of all products, and a list of all proper
products.

Parms

	pwy

	An instance of the class Pathways, a frame id or PFrame.

	Return value

	Four values as a list, each of which is a list of substrates. A substrate
may be a child of class Compounds, a child of class
Polymer-Segments, or a string.

	
substrates_of_reaction(rxn)[source]

	
	Description

	Return all of the reactants and products of a given reaction.

	Parms

	
	rxn

	An instance of the class Reactions, a frame id or PFrame.

	Return value

	A list that may consist of children of class Compounds,
children of class Polymer-Segments, or strings.

	
terminator_p(gene)[source]

	
	Description

	A predicate that determines if the given object is an instance
of the class Terminators.

	Parms

	
	gene

	A frame id or PFrame.

	Return value

	A boolean value.

	
terminators_affecting_gene(gene)[source]

	
	Description

	Find terminators in the same transcription unit and upstream of
the given gene.

	Parms

	
	gene

	An instance of class Genes, a frame id or PFrame

	Return value

	A list of instances of class Terminators.

	
tfs_bound_to_compound(cpd, include_inactive=None)[source]

	
	Description

	Returns a list of protein complexes that, when bound to the
given compound, act as a transcription factor.

	Parms

	
	cpd

	An instance of class Compounds, a frame id or PFrame.

	include_inactive

	Keyword, If True, then the inactive form of
the protein is also checked. See the function
transcription-factor? for more information.

	Return value

	A list of instances of class Proteins.

	
top_containers(protein)[source]

	
	Description

	Return the top-most containers (i.e., they are not a component
of any other protein complex) of the given protein.

Parms

	protein

	An instance of the class Proteins, a frame id or PFrame.

	Return value

	A list of instances of the class Proteins.

	
transcription_factor_active_forms(tfs)[source]

	
	Description

	For a given transcription factor, find all active forms (i.e,
form of the protein that regulates) of the transcription factor.

	Parms

	
	tfs, a frame id or PFrame.

	An instance of the class Proteins.

	Return value

	A list of instances of the class Proteins.

	
transcription_factor_ligands(tfs, mode)[source]

	
	Description

	For a single transcription factor or list of transcription
factors, return all transcription factor ligands.

	Parms

	
	tfs, a frame id or PFrame or a list of these.

	An instance or a list of instances of the class
Proteins. If tfs is not the active form, then the
active form is determined automatically.

	mode

	One of the following values: ‘activator’, ‘inhibitor’, or
‘both’.

	Return value

	A list of instances of the class Chemicals or strings.

	
transcription_factor_p(protein, include_inactive=None)[source]

	
	Description

	A predicate that determines if the given protein is a
transcription factor, or a component of a transcription factor.

	Parms

	
	protein

	An instance frame of class Proteins, a frame id or PFrame.

	include_inactive

	Keyword, If True, then the function checks to see
if any of its components or containers is a transcription
factor as well.

	Return value

	A boolean value.

	
transcription_unit_activation_frames(tu)[source]

	
	Description

	Returns a list of regulation frames that activate the
transcription unit.

	Parms

	
	tu

	An instance of the class Transcription-Units, a frame id or PFrame.

	Return value

	A list of instances of the class Regulation.

	
transcription_unit_activators(tu)[source]

	
	Description

	Returns all activator proteins of the given transcription unit.

	Parms

	
	tu

	An instance of the class Transcription-Units, a frame id or PFrame.

	Return value

	A list of instances of class Proteins.

	
transcription_unit_all_components(tu)[source]

	
	Description

	Returns all components (binding sites, promoters, genes,
terminators) of the given transcription unit.

	Parms

	
	tu

	An instance of the class Transcription-Units, a frame id or PFrame.

	Return value

	A list of instances of class Transcription-Units,
mRNA-Binding-Sites, DNA-Binding-Sites, Promoters,
Genes, or Terminators.

	
transcription_unit_binding_sites(tu)[source]

	
	Description

	Returns the binding sites of the given transcription unit.

	Parms

	
	tu

	An instance of the class Transcription-Units, a frame id or PFrame.

	Return value

	A list of instances of class DNA-Binding-Sites.

	
transcription_unit_first_gene(tu)[source]

	
	Description

	Returns the first gene of the given transcription unit.

	Parms

	
	tu

	An instance of the class Transcription-Units, a frame id or PFrame.

	Return value

	An instance of class Genes.

	
transcription_unit_genes(tu)[source]

	
	Description

	Returns the genes of the given transcription unit.

	Parms

	
	tu

	An instance of the class Transcription-Units, a frame id or PFrame.

	Return value

	A list of instances of class Genes.

	
transcription_unit_inhibition_frames(tu)[source]

	
	Description

	Returns a list of regulation frames that inhibit the
transcription unit.

	Parms

	
	tu

	An instance of the class Transcription-Units, a frame id or PFrame.

	Return value

	A list of instances of the class Regulation.

	
transcription_unit_inhibitors(tu)[source]

	
	Description

	Returns all inhibitor proteins of the given transcription unit.

	Parms

	
	tu

	An instance of the class Transcription-Units, a frame id or PFrame.

	Return value

	A list of instances of class Proteins.

	
transcription_unit_mrna_binding_sites(tu)[source]

	
	Description

	Returns the mRNA binding sites of the given transcription unit.

	Parms

	
	tu

	An instance of the class Transcription-Units, a frame id or PFrame.

	Return value

	A list of instances of class mRNA-Binding-Sites.

	
transcription_unit_promoter(tu)[source]

	
	Description

	Returns the promoter of the given transcription unit.

	Parms

	
	tu

	An instance of the class Transcription-Units, a frame id or PFrame.

	Return value

	An instance of class Promoters.

	
transcription_unit_regulation_frames(tu)[source]

	
	Description

	Returns a list of regulation frames that regulate the
transcription unit.

	Parms

	
	tu

	An instance of the class Transcription-Units, a frame id or PFrame.

	Return value

	A list of instances of the class Regulation.

	
transcription_unit_terminators(operon)[source]

	
	Description

	Returns the terminators of the given transcription unit.

	Parms

	
	operon

	An instance of the class Transcription-Units, a frame id or PFrame.

	Return value

	A list of instances of class Terminators.

	
transcription_unit_transcription_factors(tu)[source]

	
	Description

	Returns the binding sites of the given transcription unit.

	Parms

	
	tu

	An instance of the class Transcription-Units, a frame id or PFrame.

	Return value

	A list of instances of class DNA-Binding-Sites.

	
transcription_units_of_promoter(promoter)[source]

	
	Description

	Returns all transcription units of a given promoter.

	Parms

	
	promoter

	An instance of class Promoters, a frame id or PFrame.

	Return value

	A list of instances of class Transcription-Units.

	
transcription_units_of_protein(protein)[source]

	
	Description

	Return all of the transcription units for which the given
protein, or its modified form, acts as a regulator.

	Parms

	
	protein

	An instance of the class Proteins, a frame id or PFrame.

	Return value

	A list of instances of the class Transcription-Units.

	
transported_chemicals(rxn, side=None, primary_only=None, from_compartment=None, to_compartment=None, show_compartment=None)[source]

	
	Description

	Return the compounds in a transport reaction that change
compartments.

	Parms

	
	rxn

	An instance of the class Reactions, a frame id or PFrame.

	side

	Keyword, The side of the reaction from which to
return the transported compound.

	primary_only

	Keyword, If True, then filter out common
exchangers (currently defined as (PROTON NA CPD-1)+). If
True, and the only transported compounds are in this list,
then the filter doesn’t apply.

	from_compartment

	Keyword, A compartment (child of class CCO).
If specified, then only return compounds transported from
that compartment.

	to_compartment

	Keyword, A compartment (child of class CCO).
If specified, then only return compounds transported to that
compartment.

	show_compartment

	Keyword, A compartment (child of class CCO).
If specified, and the compound is modified during transport,
then only return the form of the compound as found in this
compartment.

	Return value

	A list of children of class Compounds.

	
unmodified_form(protein)[source]

	
	Description

	Return the unmodified form of the given protein, which might be
the same as the given protein.

Parms

	protein

	An instance of the class Proteins, a frame id or PFrame.

	Return value

	An instance of the class Proteins.

	
unmodified_gene_product(gene)[source]

	
	Description

	Returns the first element of the list returned by the function
unmodified-gene-products. This is useful if you are sure that
there are no alternative splice forms of your gene.

	Parms

	
	gene

	An instance of class Genes, a frame id or PFrame.

	Return value

	An instance of either class Polypeptides or ‘RNA.

	
unmodified_gene_products(gene)[source]

	
	Description

	Return all of the unmodified gene products (i.e. alternative
splice forms) of the given gene.

	Parms

	
	gene

	An instance of class Genes, a frame id or PFrame.

	Return value

	A list of instances of either class Polypeptides or ‘RNA.

	
unmodified_or_unbound_form(protein)[source]

	
	Description

	Return the unmodified form or unbound (to a small molecule) form
of the given protein, which might be the same as the given protein.

Parms

	protein

	An instance of the class Proteins, a frame id or PFrame.

	Return value

	An instance of the class Proteins.

	
variants_of_pathway(pwy)[source]

	
	Description

	Returns all variants of a pathway.

Parms

	pwy

	An instance of the class Pathways, a frame id or PFrame.

	Return value

	A list of instance of the class Pathways.

	
pythoncyc.PGDB.convertArgToLisp(arg, inquote=False)[source]

	Convert the arg into an acceptable quoted object for Python server
running on Pathway Tools. Note that any list is converted to
a quoted Lisp list.

	Parm

	arg, a PFrame, a string, a number, a boolean, None or an s-expr.
inquote, a Boolean, True => this arg is inside an already quoted expression.

	Return

	a string, the arg is transformed to be acceptable for the Python Lisp server.

	
pythoncyc.PGDB.may_be_frameid(x)[source]

	This fn is useful to convert a string to a symbol
or a list of strings to a list of symbols, to make sure it is interpreted
as a frame id; but not to apply any conversion when the arg is not a string
or a list of strings. All functions of PGDB.py apply this fn on the
arguments that need a frame ids or PFrames.

	Parm

	x: a Python object.

	Side Effect

	Raise an error, if x is not None, String, PFrame, or a list of these.

	Returns

	A symbol, list of symbols, or x unchanged.

	
pythoncyc.PGDB.mkey(s)[source]

	A simple function to convert a string into a Lisp keyword.

	Parm

	s, any Python object

	Returns

	if s is a string, it is suffixed by ‘:’, otherwise s itself.

	
pythoncyc.PGDB.prepareFnCall(fn, *args, **kwargs)[source]

	Prepare all arguments and keyword arguments for a function call to Pathway Tools.
Parms

fn, a string, the name of the Lisp function to call.
args, list of arguments
kwargs, list of keyword arguments

	Return

	a string which represents a Lisp fn call with args and keyword args.

pythoncyc.PTools module

This module handles basic operations for receiving and sending messages via a
network socket to Pathway Tools.

No major class is defined in this file, but only toplevel functions and
some simple classes for errors handling.

	
exception pythoncyc.PTools.PToolsError[source]

	Bases: exceptions.Exception

Error generated when Pathway Tools send an error due to its own Lisp execution.

	
exception pythoncyc.PTools.PythonCycError[source]

	Bases: exceptions.Exception

Error generated by one of the module of PythonCyc due to an incorrect
use of its methods or functions.

	
pythoncyc.PTools.recvAll(s)[source]

	Receive the entire message sent by Pathway Tools on socket s.
The message starts with a single character type, which is either ‘A’
or ‘L’. The ‘A’ time is used without providing a length but can take
longer to receive because it uses a timeout technique to read the entire
message. The ‘L’ type assumes that the length of the message, in characters,
is given on the next 10 characters as an integer. The message length is the
number of characters after these 10 characters.

	Parm

	s, an open network socket.

	Return

	the message received on socket s as a string.

	
pythoncyc.PTools.recvFixedLength(s, lengthMsg)[source]

	Receive a fixed length message on socket s.
Parm

	lengthMsg, an integer, which is the length in characters of the

	message to receive.

	Return

	the message received as a string.

	
pythoncyc.PTools.recvTimeOut(socket, timeOut=2)[source]

	Receive a message of unknown length on socket. While receiving a message, if no
more characters are sent on socket after timeOut seconds, it is
assumed that the message has ended. Therefore, it will always, whatever the lenght
of the message, take at least timeOut seconds to execute this method. If no character
is received after 60 seconds, this method returns with an empty message.

	Parms

	socket, an open network socket.
timeOut, number of seconds before timing out between fragments of the received

message.

	Return

	The received message, as a string, on socket.

	
pythoncyc.PTools.sendAll(s, query)[source]

	

	
pythoncyc.PTools.sendQueryToPTools(query)[source]

	Send a query to a running Pathway Tools application via a socket.

	Parm

	query, a string that the Python server in Pathway Tools can evaluate.

	Returns

	The result of the query, as a Python object, decoded by Json.

pythoncyc.PToolsFrame module

Please consult file tutorial.html under the doc directory
for an introduction on how to use this class.

	
class pythoncyc.PToolsFrame.PFrame(frameid, pgdb, getFrameData=False, isClass=False)[source]

	PFrame is a class to represent Pathway Tools’ frames. A PFrame can
represent a class frame (e.g., Reactions) as well as an instance frame
(e.g., RXN-9000).

The required parameters to create a PFrame are the frame id (a string) and a PGDB
object. For example, assuming that ‘meta’ is bound to a PGDB object, the following
create a PFrame to represent the reaction RXN-9000,

PFrame(‘RXN-9000’, meta)

By default, an instance PFrame (not a class PFrame) is created.
To create a PGDB object, use class PGDB, or call method pythoncyc.so.

A few methods were written to display frames using HTML in IPython.
Naturally, this functionality is only defined when using IPython as a
Python interpreter.

Please consult file tutorial.html under the doc directory for an introduction
on how to use this class.

	
get_frame_data()[source]

	Retrieve the frame data from Pathway Tools, that is, all slots and their values
for this PFrame are retrieved and stored locally. For a class, the instances
are not retrieved by this method. Instead, use method get_class_data applied to a PGDB
object.

	Return

	the self PFrame, modified with the new slots and data.

	
get_frame_slot_value(slot)[source]

	Retrieve the slot data for frame from Pathway Tools.

	Return

	the self PFrame, modified with the new slot with data.

	
vectorize_dict()[source]

	

	
class pythoncyc.PToolsFrame.Symbol(name)[source]

	This class can be used to represent Lisp symbols in PythonCyc.
For example, Symbol(‘trp’) represents the symbol trp. It is mainly used
to ensure that some arguments of methods are interpreted as symbols and not
as strings during the translation to send a request to Pathway Tools.

	
pythoncyc.PToolsFrame.convertLispIdtoPythonId(s)[source]

	Convert string s such that it can be a valid Python identifier.

pythoncyc.config module

This module can be used to set various parameters for PythonCyc,
in particular to set debug on or off, the host name and port number
of the running Pathway Tools’ Python server. By default, the Pathway Tools
Python server is running locally on port 5008.

	
pythoncyc.config.set_debug_off()[source]

	Turn off debug mode for PythonCyc.
Turning off debugging should turn off all output tracings of the communications between PythonCyc and Pathway Tools.

	
pythoncyc.config.set_debug_on()[source]

	Turn on debug mode for PythonCyc.
Turning on debugging should turn on output tracings of the communications between PythonCyc and Pathway Tools.

	
pythoncyc.config.set_host_name(hostname)[source]

	

	
pythoncyc.config.set_host_port(hostport)[source]

	

Module contents

This module is part of PythonCyc, a Python interface module to Pathway Tools.
This code has been tested with Python 2.6.

Pathway Tools (version 18.5 and up) must be running on some machine
with at least the option ‘-python’. It is also recommended
to start Pathway Tools with the option -lisp, so that the
connection can be monitored:

./pathway-tools -lisp -python

The global functions defined in this init file can be called before any
PGDB (an organism database in Pathway Tools) has been selected.
In fact, two of these functions, select_organism and
its synonym so, are needed to “select” a PGDB by creating a PGDB object.
See class PGDB in PGDB.py for information about how to use a PGDB object.

Please consult the tutorial.html file, under directory doc, for more information
about how to use PythonCyc.

	
pythoncyc.all_orgids()[source]

	Returns all organism unique ids (orgids) available
from the current running Pathway Tools.

	
pythoncyc.biovelo(query)[source]

	Execute a BioVelo query and return the result.

	Parameters

	query: a string, which is a BioVelo query.

	Returns

	Whatever the BioVelo query computes.

	Example

	bv(‘[(p, reactions-of-pathway(p)): p<-ecoli^^pathways]’)

	
pythoncyc.bv(query)[source]

	A synonym of method biovelo.

	
pythoncyc.run_fba(fileName)[source]

	The function run_fba does not need to have an organism selected before
being used because the FBA input file provided as input can specify
the organism.

For the documentation of this function, see method run_fba
in file PGDB.py.

	
pythoncyc.select_organism(orgid)[source]

	
	Select an organism PGDB based on its unique organism id.

	orgid: string, the unique organism id in Pathway Tools (e.g., ecoli, meta).

	
pythoncyc.so(orgid)[source]

	A synonym of method select_organism.

 Copyright 2014, SRI International.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	pythoncyc documentation

 Python Module Index

 p

 			

 		
 p	

 	[image: -]
 	
 pythoncyc	

 	
 	
 pythoncyc.config	

 	
 	
 pythoncyc.PGDB	

 	
 	
 pythoncyc.PTools	

 	
 	
 pythoncyc.PToolsFrame	

 Copyright 2014, SRI International.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	pythoncyc documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V

A

 	

 	activation_p() (pythoncyc.PGDB.PGDB method)

 	adjacent_genes_p() (pythoncyc.PGDB.PGDB method)

 	all_cofactors() (pythoncyc.PGDB.PGDB method)

 	all_direct_forms_of_protein() (pythoncyc.PGDB.PGDB method)

 	all_enzymes() (pythoncyc.PGDB.PGDB method)

 	all_forms_of_protein() (pythoncyc.PGDB.PGDB method)

 	all_genetic_regulation_proteins() (pythoncyc.PGDB.PGDB method)

 	all_modulators() (pythoncyc.PGDB.PGDB method)

 	all_operons() (pythoncyc.PGDB.PGDB method)

 	all_orgids() (in module pythoncyc)

 	all_pathways() (pythoncyc.PGDB.PGDB method)

 	

 	all_products_of_gene() (pythoncyc.PGDB.PGDB method)

 	all_protein_complexes() (pythoncyc.PGDB.PGDB method)

 	all_reactions() (pythoncyc.PGDB.PGDB method)

 	all_rxns() (pythoncyc.PGDB.PGDB method)

 	all_sigma_factors() (pythoncyc.PGDB.PGDB method)

 	all_substrates() (pythoncyc.PGDB.PGDB method)

 	all_transcription_factors() (pythoncyc.PGDB.PGDB method)

 	all_transported_chemicals() (pythoncyc.PGDB.PGDB method)

 	all_transporters() (pythoncyc.PGDB.PGDB method)

 	all_transporters_across() (pythoncyc.PGDB.PGDB method)

 	autocatalytic_reactions_of_enzyme() (pythoncyc.PGDB.PGDB method)

B

 	

 	base_components_of_protein() (pythoncyc.PGDB.PGDB method)

 	binding_site_promoters() (pythoncyc.PGDB.PGDB method)

 	binding_site_to_regulators() (pythoncyc.PGDB.PGDB method)

 	binding_site_transcription_units() (pythoncyc.PGDB.PGDB method)

 	

 	binding_sites_affecting_gene() (pythoncyc.PGDB.PGDB method)

 	biovelo() (in module pythoncyc)

 	bv() (in module pythoncyc)

C

 	

 	chromosome_of_gene() (pythoncyc.PGDB.PGDB method)

 	chromosome_of_object() (pythoncyc.PGDB.PGDB method)

 	chromosome_of_operon() (pythoncyc.PGDB.PGDB method)

 	cofactors_and_pgroups_of_enzrxn() (pythoncyc.PGDB.PGDB method)

 	compartment_of_rxn() (pythoncyc.PGDB.PGDB method)

 	compartments_of_reaction() (pythoncyc.PGDB.PGDB method)

 	complex_p() (pythoncyc.PGDB.PGDB method)

 	compounds_of_pathway() (pythoncyc.PGDB.PGDB method)

 	

 	containers_of() (pythoncyc.PGDB.PGDB method)

 	containing_chromosome() (pythoncyc.PGDB.PGDB method)

 	containing_tus() (pythoncyc.PGDB.PGDB method)

 	convertArgToLisp() (in module pythoncyc.PGDB)

 	convertLispIdtoPythonId() (in module pythoncyc.PToolsFrame)

 	cotranscribed_genes() (pythoncyc.PGDB.PGDB method)

 	create_frame_objects() (pythoncyc.PGDB.PGDB method)

D

 	

 	deactivated_or_inhibited_by_compound() (pythoncyc.PGDB.PGDB method)

 	direct_activators() (pythoncyc.PGDB.PGDB method)

 	direct_inhibitors() (pythoncyc.PGDB.PGDB method)

 	

 	direct_regulators() (pythoncyc.PGDB.PGDB method)

 	dna_binding_site_p() (pythoncyc.PGDB.PGDB method)

 	DNA_binding_sites_of_protein() (pythoncyc.PGDB.PGDB method)

E

 	

 	enzrxn_activators() (pythoncyc.PGDB.PGDB method)

 	enzrxn_inhibitors() (pythoncyc.PGDB.PGDB method)

 	enzyme_activity_name() (pythoncyc.PGDB.PGDB method)

 	enzyme_p() (pythoncyc.PGDB.PGDB method)

 	

 	enzymes_of_gene() (pythoncyc.PGDB.PGDB method)

 	enzymes_of_pathway() (pythoncyc.PGDB.PGDB method)

 	enzymes_of_reaction() (pythoncyc.PGDB.PGDB method)

F

 	

 	full_enzyme_name() (pythoncyc.PGDB.PGDB method)

G

 	

 	gene_clusters() (pythoncyc.PGDB.PGDB method)

 	gene_p() (pythoncyc.PGDB.PGDB method)

 	gene_transcription_units() (pythoncyc.PGDB.PGDB method)

 	genes_in_same_operon() (pythoncyc.PGDB.PGDB method)

 	genes_of_pathway() (pythoncyc.PGDB.PGDB method)

 	genes_of_protein() (pythoncyc.PGDB.PGDB method)

 	genes_of_proteins() (pythoncyc.PGDB.PGDB method)

 	genes_of_reaction() (pythoncyc.PGDB.PGDB method)

 	genes_regulated_by_gene() (pythoncyc.PGDB.PGDB method)

 	genes_regulated_by_protein() (pythoncyc.PGDB.PGDB method)

 	genes_regulating_gene() (pythoncyc.PGDB.PGDB method)

 	get_class_all_instances() (pythoncyc.PGDB.PGDB method)

 	

 	get_class_all_subs() (pythoncyc.PGDB.PGDB method)

 	get_class_data() (pythoncyc.PGDB.PGDB method)

 	get_frame_data() (pythoncyc.PToolsFrame.PFrame method)

 	get_frame_objects() (pythoncyc.PGDB.PGDB method)

 	get_frame_slot_value() (pythoncyc.PToolsFrame.PFrame method)

 	get_major_classes() (pythoncyc.PGDB.PGDB method)

 	get_name_string() (pythoncyc.PGDB.PGDB method)

 	get_predecessors() (pythoncyc.PGDB.PGDB method)

 	get_slot_value() (pythoncyc.PGDB.PGDB method)

 	get_slot_values() (pythoncyc.PGDB.PGDB method)

 	get_successors() (pythoncyc.PGDB.PGDB method)

H

 	

 	homomultimeric_containers_of() (pythoncyc.PGDB.PGDB method)

I

 	

 	inhibition_p() (pythoncyc.PGDB.PGDB method)

 	is_a_class_name() (pythoncyc.PGDB.PGDB method)

 	

 	is_an_instance_name() (pythoncyc.PGDB.PGDB method)

L

 	

 	leader_peptide_p() (pythoncyc.PGDB.PGDB method)

M

 	

 	may_be_frameid() (in module pythoncyc.PGDB)

 	mkey() (in module pythoncyc.PGDB)

 	modified_and_unmodified_forms() (pythoncyc.PGDB.PGDB method)

 	

 	modified_containers() (pythoncyc.PGDB.PGDB method)

 	modified_forms() (pythoncyc.PGDB.PGDB method)

 	monomers_of_protein() (pythoncyc.PGDB.PGDB method)

N

 	

 	neighboring_genes_p() (pythoncyc.PGDB.PGDB method)

 	next_gene_on_replicon() (pythoncyc.PGDB.PGDB method)

 	

 	noncontiguous_pathway_p() (pythoncyc.PGDB.PGDB method)

 	nonspecific_forms_of_rxn() (pythoncyc.PGDB.PGDB method)

O

 	

 	operon_of_gene() (pythoncyc.PGDB.PGDB method)

P

 	

 	pathway_allows_enzrxn() (pythoncyc.PGDB.PGDB method)

 	pathway_components() (pythoncyc.PGDB.PGDB method)

 	pathway_hole_p() (pythoncyc.PGDB.PGDB method)

 	pathways_of_compound() (pythoncyc.PGDB.PGDB method)

 	pathways_of_enzrxn() (pythoncyc.PGDB.PGDB method)

 	pathways_of_gene() (pythoncyc.PGDB.PGDB method)

 	PFrame (class in pythoncyc.PToolsFrame)

 	PGDB (class in pythoncyc.PGDB)

 	phantom_gene_p() (pythoncyc.PGDB.PGDB method)

 	polypeptide_or_homomultimer_p() (pythoncyc.PGDB.PGDB method)

 	prepareFnCall() (in module pythoncyc.PGDB)

 	previous_gene_on_replicon() (pythoncyc.PGDB.PGDB method)

 	promoter_binding_sites() (pythoncyc.PGDB.PGDB method)

 	protein_coding_gene() (pythoncyc.PGDB.PGDB method)

 	

 	protein_in_compartment_p() (pythoncyc.PGDB.PGDB method)

 	protein_or_rna_containers_of() (pythoncyc.PGDB.PGDB method)

 	protein_p() (pythoncyc.PGDB.PGDB method)

 	pseudo_gene_p() (pythoncyc.PGDB.PGDB method)

 	PToolsError

 	put_slot_value() (pythoncyc.PGDB.PGDB method)

 	put_slot_values() (pythoncyc.PGDB.PGDB method)

 	pythoncyc (module)

 	pythoncyc.config (module)

 	pythoncyc.PGDB (module)

 	pythoncyc.PTools (module)

 	pythoncyc.PToolsFrame (module)

 	PythonCycError

R

 	

 	reaction_reactants_and_products() (pythoncyc.PGDB.PGDB method)

 	reaction_type() (pythoncyc.PGDB.PGDB method)

 	reactions_of_compound() (pythoncyc.PGDB.PGDB method)

 	reactions_of_enzyme() (pythoncyc.PGDB.PGDB method)

 	reactions_of_gene() (pythoncyc.PGDB.PGDB method)

 	reactions_of_protein() (pythoncyc.PGDB.PGDB method)

 	recvAll() (in module pythoncyc.PTools)

 	recvFixedLength() (in module pythoncyc.PTools)

 	recvTimeOut() (in module pythoncyc.PTools)

 	reduce_modified_proteins() (pythoncyc.PGDB.PGDB method)

 	regulation_frame_transcription_units() (pythoncyc.PGDB.PGDB method)

 	regulator_of_type() (pythoncyc.PGDB.PGDB method)

 	regulator_proteins_of_transcription_unit() (pythoncyc.PGDB.PGDB method)

 	

 	regulators_of_gene_transcription() (pythoncyc.PGDB.PGDB method)

 	regulators_of_operon_transcription() (pythoncyc.PGDB.PGDB method)

 	regulon_of_protein() (pythoncyc.PGDB.PGDB method)

 	rna_coding_gene() (pythoncyc.PGDB.PGDB method)

 	run_fba() (in module pythoncyc)

 	

 	(pythoncyc.PGDB.PGDB method)

 	rxn_in_compartment_p() (pythoncyc.PGDB.PGDB method)

 	rxn_present_p() (pythoncyc.PGDB.PGDB method)

 	rxn_specific_form_of_rxn_p() (pythoncyc.PGDB.PGDB method)

 	rxn_w_isozymes_p() (pythoncyc.PGDB.PGDB method)

 	rxn_without_sequenced_enzyme_p() (pythoncyc.PGDB.PGDB method)

 	rxns_adjacent_in_pwy_p() (pythoncyc.PGDB.PGDB method)

 	rxns_catalyzed_by_complex() (pythoncyc.PGDB.PGDB method)

 	rxns_w_isozymes() (pythoncyc.PGDB.PGDB method)

S

 	

 	save_pgdb() (pythoncyc.PGDB.PGDB method)

 	select_organism() (in module pythoncyc)

 	sendAll() (in module pythoncyc.PTools)

 	sendPgdbFnCall() (pythoncyc.PGDB.PGDB method)

 	sendPgdbFnCallBool() (pythoncyc.PGDB.PGDB method)

 	sendPgdbFnCallList() (pythoncyc.PGDB.PGDB method)

 	sendPgdbQuery() (pythoncyc.PGDB.PGDB method)

 	sendQueryToPTools() (in module pythoncyc.PTools)

 	set_debug_off() (in module pythoncyc.config)

 	set_debug_on() (in module pythoncyc.config)

 	

 	set_host_name() (in module pythoncyc.config)

 	set_host_port() (in module pythoncyc.config)

 	small_molecule_cplxes_of_prot() (pythoncyc.PGDB.PGDB method)

 	so() (in module pythoncyc)

 	species_of_protein() (pythoncyc.PGDB.PGDB method)

 	specific_forms_of_rxn() (pythoncyc.PGDB.PGDB method)

 	substrate_of_generic_rxn() (pythoncyc.PGDB.PGDB method)

 	substrates_of_pathway() (pythoncyc.PGDB.PGDB method)

 	substrates_of_reaction() (pythoncyc.PGDB.PGDB method)

 	Symbol (class in pythoncyc.PToolsFrame)

T

 	

 	terminator_p() (pythoncyc.PGDB.PGDB method)

 	terminators_affecting_gene() (pythoncyc.PGDB.PGDB method)

 	tfs_bound_to_compound() (pythoncyc.PGDB.PGDB method)

 	top_containers() (pythoncyc.PGDB.PGDB method)

 	transcription_factor_active_forms() (pythoncyc.PGDB.PGDB method)

 	transcription_factor_ligands() (pythoncyc.PGDB.PGDB method)

 	transcription_factor_p() (pythoncyc.PGDB.PGDB method)

 	transcription_unit_activation_frames() (pythoncyc.PGDB.PGDB method)

 	transcription_unit_activators() (pythoncyc.PGDB.PGDB method)

 	transcription_unit_all_components() (pythoncyc.PGDB.PGDB method)

 	transcription_unit_binding_sites() (pythoncyc.PGDB.PGDB method)

 	transcription_unit_first_gene() (pythoncyc.PGDB.PGDB method)

 	

 	transcription_unit_genes() (pythoncyc.PGDB.PGDB method)

 	transcription_unit_inhibition_frames() (pythoncyc.PGDB.PGDB method)

 	transcription_unit_inhibitors() (pythoncyc.PGDB.PGDB method)

 	transcription_unit_mrna_binding_sites() (pythoncyc.PGDB.PGDB method)

 	transcription_unit_promoter() (pythoncyc.PGDB.PGDB method)

 	transcription_unit_regulation_frames() (pythoncyc.PGDB.PGDB method)

 	transcription_unit_terminators() (pythoncyc.PGDB.PGDB method)

 	transcription_unit_transcription_factors() (pythoncyc.PGDB.PGDB method)

 	transcription_units_of_promoter() (pythoncyc.PGDB.PGDB method)

 	transcription_units_of_protein() (pythoncyc.PGDB.PGDB method)

 	transported_chemicals() (pythoncyc.PGDB.PGDB method)

U

 	

 	unmodified_form() (pythoncyc.PGDB.PGDB method)

 	unmodified_gene_product() (pythoncyc.PGDB.PGDB method)

 	

 	unmodified_gene_products() (pythoncyc.PGDB.PGDB method)

 	unmodified_or_unbound_form() (pythoncyc.PGDB.PGDB method)

V

 	

 	variants_of_pathway() (pythoncyc.PGDB.PGDB method)

 	

 	vectorize_dict() (pythoncyc.PToolsFrame.PFrame method)

 Copyright 2014, SRI International.
 Created using Sphinx 1.3.5.

 _static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/comment.png

_static/plus.png

_static/ajax-loader.gif

_modules/pythoncyc/PToolsFrame.html

 Navigation

 		
 index

 		
 modules |

 		pythoncyc documentation »

 		Module code »

 		pythoncyc »

 Source code for pythoncyc.PToolsFrame

Copyright (c) 2014, SRI International

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
--

"""
 Please consult file tutorial.html under the doc directory
 for an introduction on how to use this class.
"""

import sys
import config
from PTools import PToolsError, PythonCycError
if 'IPython' in sys.modules:
 from IPython.display import display, HTML

[docs]def convertLispIdtoPythonId(s):
 """
 Convert string s such that it can be a valid Python identifier.
 """
 return s.replace('-','_').replace('.','_').replace('?','_p').replace('|','').lower()

[docs]class Symbol():
 """
 This class can be used to represent Lisp symbols in PythonCyc.
 For example, Symbol('trp') represents the symbol trp. It is mainly used
 to ensure that some arguments of methods are interpreted as symbols and not
 as strings during the translation to send a request to Pathway Tools.
 """
 def __init__(self, name):
 self._name = name
 return None

[docs]class PFrame():
 """
 PFrame is a class to represent Pathway Tools' frames. A PFrame can
 represent a class frame (e.g., Reactions) as well as an instance frame
 (e.g., RXN-9000).

 The required parameters to create a PFrame are the frame id (a string) and a PGDB
 object. For example, assuming that 'meta' is bound to a PGDB object, the following
 create a PFrame to represent the reaction RXN-9000,

 PFrame('RXN-9000', meta)

 By default, an instance PFrame (not a class PFrame) is created.
 To create a PGDB object, use class PGDB, or call method pythoncyc.so.

 IPython

 A few methods were written to display frames using HTML in IPython.
 Naturally, this functionality is only defined when using IPython as a
 Python interpreter.

 Please consult file tutorial.html under the doc directory for an introduction
 on how to use this class.

 """

 def __init__(self, frameid, pgdb, getFrameData=False, isClass = False):
 """
 The PFrame is created assuming that the frameid is coercible to a frame in the PGDB.
 In particular, the frameid string is not converted and must have the appropriate camel case.
 Creation of a PFrame is done lazily when getFrameData is False but is retrieved
 now when getFrameData is True.
 """
 # Always store the frameid surrounded by vertical bars.
 self.__dict__['frameid'] = frameid if (frameid.startswith('|') and frameid.endswith('|')) else '|'+frameid+'|'
 self._isclass = isClass
 if isClass:
 self.__dict__['instances'] = []
 # The complete frame (the slot values) is not created by default.
 self._gotframe = False
 # This is the PGDB object, not the PGDB name.
 self.__dict__['pgdb'] = pgdb
 # Add this frame on the list of current frames for this pgdb.
 pgdb.__dict__['_frames'][convertLispIdtoPythonId(frameid)] = self
 # Retrieve the whole frame from Pathway Tools if requested.
 # TBD: add the frame on the list of instances for the corresponding class.
 if getFrameData:
 self.get_frame_data()
 return None

 # The following four definitions are for the pickle (or cPickle) module.
 # TBD: this is work in progress.
 def __getinitargs__(self):
 return (self.frameid, self.pgdb)

 def __getstate__(self):
 # Use a compact representation of a PFrame.
 return self.vectorize_dict()

 def __setstate__(self, values):
 # TBD: Use schema of this PFrame to recreate dictionary.
 self.__dict__ = dict

[docs] def vectorize_dict(self):
 self.__dict__.values()

 # End of definitions for pickle.

 def __getslice__(self, i, j, stride = None):
 if config._debug:
 print 'PFrame __getslice__ ', i, j, stride
 return self.instances[i:j:stride]

 def __getattr__(self, attr):
 # Accessing a slot of the frame using attribute syntax (e.g. r.left)
 if config._debug:
 print 'PFrame __getattr__ ', attr

 if attr in self.__dict__:
 return self.__dict__[attr]
 else:
 attrId = convertLispIdtoPythonId(attr)
 if attrId in self.__dict__:
 return self.__dict__[attrId]

 if self._gotframe:
 return None
 # raise PythonCycError('No slot with name %s exists for frame %s.' % (attr, self.frameid))
 else:
 # Get the slot value from Pathway Tools.
 self.get_frame_slot_value(attr)
 if not (attrId in self.__dict__):
 return None
 # raise PythonCycError('No slot with name %s exists for frame %s.' % (attr, self.frameid))
 else:
 return self.__dict__[attrId]

 def __getitem__(self,attr):
 if config._debug:
 print "PFrame __getitem__ ", attr
 # The slice case is for attr = slice(i,j,s)
 if (isinstance(attr,int) or isinstance(attr, slice)):
 if 'instances' in self.__dict__:
 return self.instances[attr]
 else:
 raise PythonCycError('Indexing cannot be applied because this is a PFrame which is not a vector and this PFrame has no instances attribute.')

 if attr in self.__dict__:
 return self.__dict__[attr]
 else:
 attrId = convertLispIdtoPythonId(attr)
 if attrId in self.__dict__:
 return self.__dict__[attrId]
 else:
 return self.__getattr__(attr)

 def __dir__(self):
 return (dir(self.__class__) + self.__dict__.keys())

[docs] def get_frame_slot_value(self, slot):
 """
 Retrieve the slot data for frame from Pathway Tools.

 Return
 the self PFrame, modified with the new slot with data.
 """
 # FrameObject is a dictionary of slot names and values.
 [slotName, value] = self.pgdb.sendPgdbFnCall('get-frame-slot-value', self.frameid, Symbol(slot))
 if not slotName:
 raise PythonCycError("Slot "+slot+" does not exist for frame "+self.frameid+" from organism (orgid) "+self.pgdb._orgid)
 # Modify slot name to allow Python's syntax (e.g., '_' instead of '-').
 self.__dict__[convertLispIdtoPythonId(slotName)] = value
 return self

[docs] def get_frame_data(self):
 """
 Retrieve the frame data from Pathway Tools, that is, all slots and their values
 for this PFrame are retrieved and stored locally. For a class, the instances
 are not retrieved by this method. Instead, use method get_class_data applied to a PGDB
 object.

 Return
 the self PFrame, modified with the new slots and data.
 """
 # FrameObject is a dictionary of slot names and values.
 frameObject = self.pgdb.sendPgdbFnCall('get-frame-object', self.frameid)
 if not frameObject:
 raise PythonCycError("Could not retrieve frame "+self.frameid+" from organism (orgid) "+self.pgdb._orgid)
 else:
 self._gotframe = True
 # Modify slot names to allow Python's syntax (e.g., '_' instead of '-').
 for slot in frameObject:
 self.__dict__[convertLispIdtoPythonId(slot)] = frameObject[slot]
 return self

 def __setattr__(self, attr, val):
 if not attr.startswith('_'):
 raise PythonCycError("PFrames are read only objects. Attributes of PFrame objects cannot be modified "+str((self.frameid,attr,val))+". You can only modify slot frames for the PGDB in the running Pathway Tools by using methods put_slot_value or put_slot_values using a PGDB object.")
 self.__dict__[attr] = val
 return None

 def __setitem__(self, attr, val):
 if not attr.startswith('_'):
 raise PythonCycError("PFrames are read only objects. Attributes of PFrame objects cannot be modified "+str((self.frameid,attr,val))+". You can only modify slot frames for the PGDB in the running Pathway Tools by using methods put_slot_value or put_slot_values using a PGDB object.")
 self.__dict__[attr] = val
 return None

 def __str__(self):
 if self._isclass:
 return '<PFrame class ' + self.frameid+' currently with '+str(len(self.instances))+' instances ('+self.pgdb._orgid+')>'
 else:
 return '<PFrame instance ' + self.frameid+' ('+self.pgdb._orgid+')>'

 def __repr__(self):
 if self._isclass:
 return self.__str__()
 else:
 return str(self.__dict__)

 if 'IPython' in sys.modules:
 def _ipython_display_(self):
 table = ''
 if not self._isclass:
 for attr in sorted(self.__dict__):
 if not (attr.startswith('_')):
 table = table+"<tr><td>"+str(attr)+"</td><td>"+str(self.__dict__[attr])+"</td></tr>"
 else:
 table = table+'<tr><td>Class '+self.frameid+' has '+str(self._nb_pframes())+' instances</td></td></tr>'
 if table == '':
 table = '<tr><td>' + self.__str__() + '</td></tr>'
 table = '<table>'+ table + '</table>'
 display(HTML(table))

 def _nb_pframes(self):
 return len(self.instances)

 def __eq__(self, frame):
 # If the given frame is a string, it is assumed to be a frameid.
 if isinstance(frame, str):
 return self.frameid == frame
 # Otherwise it could be a Frame.
 elif isinstance(frame, PFrame):
 # TBD: should we consider the name of the pgdb?
 return (self.pgdb == frame.pgdb) and (self.frameid == frame.frameid)
 # Otherwise it cannot be equal to this object.
 else: return False

 def __ne__(self, frame):
 return not self.__eq__(frame)

 © Copyright 2014, SRI International.
 Created using Sphinx 1.3.5.

_modules/pythoncyc/PGDB.html

 Navigation

 		
 index

 		
 modules |

 		pythoncyc documentation »

 		Module code »

 		pythoncyc »

 Source code for pythoncyc.PGDB

Copyright (c) 2014, SRI International

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
--

import PTools
import sys
import config
from PTools import PToolsError, PythonCycError
from PToolsFrame import Symbol, PFrame, convertLispIdtoPythonId
if 'IPython' in sys.modules:
 from IPython.display import display, HTML

[docs]def may_be_frameid(x):
 """
 This fn is useful to convert a string to a symbol
 or a list of strings to a list of symbols, to make sure it is interpreted
 as a frame id; but not to apply any conversion when the arg is not a string
 or a list of strings. All functions of PGDB.py apply this fn on the
 arguments that need a frame ids or PFrames.

 Parm
 x: a Python object.

 Side Effect
 Raise an error, if x is not None, String, PFrame, or a list of these.

 Returns
 A symbol, list of symbols, or x unchanged.
 """
 if x == None:
 return None
 elif isinstance(x,list):
 return [may_be_frameid(y) for y in x]
 if isinstance(x,PFrame):
 return x
 elif isinstance(x,basestring):
 return Symbol(x)
 else: raise PythonCycError('Error: the argument must a string or a PFrame but given {0}.'.format(x))

[docs]def mkey(s):
 """
 A simple function to convert a string into a Lisp keyword.

 Parm
 s, any Python object
 Returns
 if s is a string, it is suffixed by ':', otherwise s itself.
 """
 if isinstance(s,basestring):
 return ':'+s
 else: return s

[docs]def convertArgToLisp(arg, inquote=False):
 """
 Convert the arg into an acceptable quoted object for Python server
 running on Pathway Tools. Note that any list is converted to
 a quoted Lisp list.

 Parm
 arg, a PFrame, a string, a number, a boolean, None or an s-expr.
 inquote, a Boolean, True => this arg is inside an already quoted expression.
 Return
 a string, the arg is transformed to be acceptable for the Python Lisp server.
 """
 if isinstance(arg, Symbol):
 return ("" if inquote else "'")+arg._name
 # Type basestring includes string and unicode string.
 elif isinstance(arg, basestring):
 # It is either a symbol, a string or a keyword.
 # If it starts and ends with '|', assumes it is a symbol and add
 # a quote if not already in a quoted context otherwise just
 # translates to a string.
 # The tests for symbols and keywords are simplified
 # because if a tab or any characters not representing a Lisp
 # keyword or symbols is embedded in the string, it is not detected.
 if arg[0] == '|' and arg[-1] == '|' and not (' ' in arg):
 return ("" if inquote else "'")+arg
 elif arg[0] == ':' and not (' ' in arg):
 return arg
 else: return '"'+arg+'"'
 # Note: False and True are also of type int.
 # So, do this test before isinstance(... (int))
 elif isinstance(arg, bool):
 return 't' if arg else 'nil'
 elif arg == None:
 return 'nil'
 elif isinstance(arg, (int, long, float, complex)):
 return str(arg)
 elif isinstance(arg, PFrame):
 # Just using the frameid is enough (there is no need to
 # refer to the PGDB) because the arg is used in a call
 # using the macro 'with-organism' where the PGDB is specified.
 return arg.frameid
 elif isinstance(arg, list):
 return (("" if inquote else "'") +
 '('+' '.join(convertArgToLisp(e,inquote=True) for e in arg) + ')')
 elif isinstance(arg, dict):
 # Convert a dictionary into a list of lists.
 # {'a':2, 'b':3} => (('a' . 2) ('b' . 3))
 return convertArgToLisp(dict.items(arg))
 elif isinstance(arg, tuple):
 # A Python tuple becomes an improper list in Lisp
 # (1,) => (NIL . 1)
 # (1,2) => (1 . 2)
 # (1,2,3) => (1 2 . 3)
 return (("" if inquote else "'") +
 '('+(' '.join(convertArgToLisp(e,inquote=True) for e in arg[0:-1]) if (len(arg)>1) else '()') + ' . '
 + convertArgToLisp(arg[-1],inquote=True) + ')')
 else: raise PythonCycError('PythonCyc does not know how to convert to Lisp the Python argument {0}.'.format(arg))

[docs]def prepareFnCall(fn, *args, **kwargs):
 """
 Prepare all arguments and keyword arguments for a function call to Pathway Tools.
 Parms
 fn, a string, the name of the Lisp function to call.
 args, list of arguments
 kwargs, list of keyword arguments
 Return
 a string which represents a Lisp fn call with args and keyword args.
 """
 args2 = ' '.join([convertArgToLisp(arg) for arg in args])
 keywords = ' '.join([':'+key+' '+str(convertArgToLisp(kwargs[key]))
 for key in kwargs if kwargs[key] != None])
 return '('+fn+' '+args2+' '+keywords+')'

[docs]class PGDB():
 """
 Please consult the the tutorial.html file under the doc directory
 for an introduction on how to use this class.

 """

 def __init__(self, orgid):
 """
 Once a PGDB object is created, it has been validated that the
 organism (orgid) exists on the running Pathway Tools server.
 From that PGDB object (e.g. ecoli), many classes of objects
 can be retrieved by using the attribute syntax of Python, such
 as ecoli.reactions.
 """
 if config._debug:
 print "PGDB __init__"
 self._orgid = "unknown"
 self._error = False
 # All PFrame objects of the PGDB are stored in attribute _frames, keyed by their frame ids.
 self._frames = {}
 # Verify that the running Pathway Tools has the PGDB (organism).
 try:
 r = PTools.sendQueryToPTools('(orgid-exist-p \''+orgid+')')
 except PToolsError, msg:
 raise PythonCycError('Pathway Tools was unable to verify if organism (orgid) %s is known in your running Pathway Tools. More specifically: %s' % (orgid, msg))
 if not r:
 raise PythonCycError("The organism orgid %s is unknown. Use pythoncyc.all_orgids() to get a list of known orgids." % orgid)
 self._error = True
 else:
 self._orgid = orgid
 return None

 def __getinitargs__(self):
 """ For the Pickle module. """
 return (self._orgid,)

 def __getstate__(self):
 """ For the Pickel module """
 return self.__dict__.copy()

 def __setstate__(self, dict):
 """ For the Pickel module """
 self.__dict__ = dict

 def __repr__(self):
 return self.__str__()

 def __str__(self):
 return '<PGDB '+self._orgid+', currently has '+str(self._nb_pframes())+' PFrames>'

 def __dir__(self):
 return (dir(self.__class__) + self.__dict__.keys())

 def _nb_pframes(self):
 """
 Return the number of PFrame objects accessible as attributes for a PGDB object.
 """
 return len(self._frames)

 def __setattr__(self, attr, val):
 if attr.startswith('_'):
 self.__dict__[attr] = val
 return None
 attrId = convertLispIdtoPythonId(attr)
 if isinstance(val, PFrame):
 self._frames[attrId] = val
 else:
 self.__dict__[attrId] = val
 return None

 def __getattr__(self, attr):
 """
 Attributes for a PGDB may refer to frame ids. A frame id that
 has dashes in Pathway Tools, is converted to attribute with
 underscores '_' instead. If an attribute does not exist yet,
 a request to Pathway Tools is done to verify if it may exist
 as an instance or as a class. PFrame instances and classes are
 created automatically when the corresponding instances or
 classes exist in the PGDB.
 """
 if config._debug:
 print "PGDB ",self._orgid, "__getattr__", attr
 # If the converted attribute exists as an attribute.
 attrId = convertLispIdtoPythonId(attr)
 if attrId in self.__dict__:
 return self.__dict__[attrId]
 if isinstance(attr,int):
 return self._frames[attr]
 if attrId in self._frames:
 return self._frames[attrId]
 # It could be an access to a class of objects (e.g. genes -> |Genes|).
 realClassName = self.is_a_class_name(attr)
 if realClassName:
 # Use realClassName for the frame id, not attr.
 return self.get_class_data(realClassName)
 # It could be an instance in the PGDB. Try to create a frame for it.
 realInstanceName = self.is_an_instance_name(attr)
 if realInstanceName:
 # Use the realname for the frame-id so that retrieving the
 # object from Pathway Tools will work.
 f = PFrame(realInstanceName, self, getFrameData=True, isClass=False)
 return f
 else:
 return None

 if 'IPython' in sys.modules:
 def _ipython_display_(self):
 table = "<table>"
 # A PGDB frame may contain thousands of attributes, one
 # for each instance. This output is too large to print in
 # most cases. Print a succinct representation of the PGDB frame.
 table = table+"<tr><td>orgid</td><td>"+self._orgid+"</td></tr>"
 table = table+"<tr><td>Number of PFrames</td><td>"+str(self._nb_pframes())+"</td></tr>"
 table = table+"</table>"
 display(HTML(table))

 def __setitem__(self, attr, val):
 attrId = convertLispIdtoPythonId(attr)
 if isinstance(val, PFrame):
 self._frames[attrId] = val
 else:
 self.__dict__[attrId] = val
 return None

 def __getitem__(self, index):
 if config._debug:
 print "PGDB __getitem__", index
 if (isinstance(index,int) or isinstance(index,slice)) :
 if self._frames:
 return self._frames[index]
 else:
 raise PythonCycError('This PGDB has no _frames attribute.')

 # Accessing an item such as ecoli['trp'], index is a string not a number.
 if index in self._frames:
 return self._frames[index]
 else:
 attrId = convertLispIdtoPythonId(index)
 if attrId in self._frames:
 return self._frames[attrId]
 else:
 return self.__getattr__(index)

 def __eq__(self, other):
 # The name of the orgid determines the object.
 if isinstance(other, PGDB):
 return self._orgid == other._orgid
 else:
 return False

 def __ne__(self, o):
 return not self.__eq__(o)

[docs] def save_pgdb(self):
 """
 Save a PGDB that has been modified in the running Pathway Tools server.
 The PGDB that will be saved is based on the orgid of this PGDB object.
 """
 return self.sendPgdbFnCallBool('save-kb')

[docs] def get_major_classes(self):
 """
 Get from Pathway Tools the classes Reactions, Pathways, Genes,
 Compounds, Proteins, and all their instances with their data.
 This method is very time consuming has
 several ten of thousands of frames need to be transferred
 from Pathway Tools and the corresponding PFrames need to be created.
 """
 self.reactions
 self.pathways
 self.genes
 self.compounds
 self.proteins
 self.get_frame_objects([f.frameid for f in self.reactions.instances])
 self.get_frame_objects([f.frameid for f in self.pathways.instances])
 self.get_frame_objects([f.frameid for f in self.genes.instances])
 self.get_frame_objects([f.frameid for f in self.compounds.instances])
 self.get_frame_objects([f.frameid for f in self.proteins.instances])

[docs] def sendPgdbQuery(self, query):
 """
 Send a query for a specific PGDB using its orgid.
 Use the macro with-organism for the Lisp Python server.

 Parm
 query, a string. That string should be acceptable to the Lisp Python server.
 Return
 the result (as a Python object) of the execution of the query in Pathway Tools.
 """
 # Evaluate a query in the context of this PGDB.
 if self._orgid == "unknown":
 print "Cannot send any query because the selected organism is unknown."
 return None
 else:
 return PTools.sendQueryToPTools('(with-organism (:org-id \''+self._orgid+') '+query+')')

[docs] def sendPgdbFnCallBool(self, fn, *args, **kwargs):
 """
 Send a PGDB query to Pathway Tools that will return a Bool value.
 This method takes care of translating no value or an empty list to False.
 """
 result = self.sendPgdbFnCall(fn, *args, **kwargs)
 if result == None or result == []:
 return False
 else: return result

[docs] def sendPgdbFnCallList(self, fn, *args, **kwargs):
 """
 Send a PGDB query to Pathway Tools that will return a List value.
 This method takes care of translating no value or False to an empty list.
 """
 result = self.sendPgdbFnCall(fn, *args, **kwargs)
 if result == None or result == False:
 return []
 else: return result

[docs] def sendPgdbFnCall(self, fn, *args, **kwargs):
 """
 Send a PGDB query to Pathway Tools based on function fn and arguments args and
 kwargs (keyword args) and return the result. If multiple values are
 returned by fn, the Pathway Tools Python server transforms them into a list.
 """
 fnCall = prepareFnCall(fn, *args, **kwargs)
 return self.sendPgdbQuery(fnCall)

[docs] def is_a_class_name(self, className):
 """
 Verify that className is a known class in Pathway Tools.
 Return the real name of that class because the className may have
 been transformed by fn class-name-p to generate the closest real class name.

 Parm
 className, a string, the class name to verify.
 Return
 a string, either className itself, or modified by replacing
 '_' to '-' or some case letters changed to match an existing class
 name in Pathway Tools.
 """
 return self.sendPgdbFnCallBool('class-name-p', className)

[docs] def get_class_data(self, realClassName, getInstancesData=False):
 """
 Retrieve the class slots and their values, creating a PFrame for the class.
 Retrieve also the list of instances from Pathway Tools and
 create a PFrame for each instance. Store the list of PFrames
 in attribute 'instances' of the class object. If getInstancesData is True,
 get also all instances slots and their data.

 Parms
 realClassName, a string, the real name of the class to retrieve.
 getInstancesData, boolean, True => get the slots and data of all instances.

 Returns
 A PFrame representing the class with all its slot names
 as Python attributes.
 """
 fclass = PFrame(realClassName, self, getFrameData=True, isClass = True)
 attrId = convertLispIdtoPythonId(realClassName)
 frameids = self.sendPgdbFnCallList('get-class', fclass)
 if not (frameids == None):
 if getInstancesData:
 # Create PFrame instances with all their slots and data.
 instances = self.get_frame_objects(frameids)
 else:
 # Create PFrame instances but the data for each frame is not brought in now.
 # Reuse a PFrame for a frameid, if it already exists for this PGDB.
 instances = self.create_frame_objects(frameids)
 fclass.__dict__['instances'] = instances
 return fclass

[docs] def create_frame_objects(self, frameids):
 """
 Create all the required PFrames for the given frameids.
 If a PFrame already exist for a frameid on the PGDB, reuse
 that PFrame, otherwise create a PFrame. No data is transferred
 from Pathway Tools.

 Parm
 frameids, list of frame ids (strings)
 Side-Effects
 self is modified to contain new PFrames indexed on new frameids
 Return
 list of PFrames
 """
 pframes = []
 for frameid in frameids:
 attrID = convertLispIdtoPythonId(frameid)
 if attrID in self.__dict__:
 f = self.__dict__[attrID]
 else:
 f = PFrame(frameid, self)
 self.__dict__[attrID] = f
 pframes.append(f)
 return pframes

[docs] def get_frame_objects(self, frameids):
 """
 For each frame id of the list frameids, retrieve the slots
 and their data. Reuse the PFrame of frameid if it already exist for this PGDB,
 otherwise create one and attach it to this PGDB.

 Parm
 frameids, list of frame ids (strings).
 Return
 list of PFrames, one for each frame id.
 """
 frameObjects = self.sendPgdbFnCallList('get-frame-objects', may_be_frameid(frameids))
 pframes = []
 for frameid, slotsData in frameObjects.iteritems():
 attrID = convertLispIdtoPythonId(frameid)
 if attrID in self.__dict__:
 f = self.__dict__[attrID]
 else:
 f = PFrame(frameid, self)
 self.__dict__[attrID] = f
 pframes.append(f)
 f._gotframe = True
 for slot, data in slotsData.iteritems():
 f.__dict__[convertLispIdtoPythonId(slot)] = data
 return pframes

[docs] def is_an_instance_name(self, frameid):
 """
 Similar to method is_a_class_name but for a frame that is not a class.
 If frameid is a real frame id of an object of this PGDB, returns frameid as is.
 If not, try to convert frameid to an exist frame id by transforming cases of
 letters and underscores to dashes in frameid.

 Parm
 frameid, a string.

 Returns
 a string representing an existing frame id in the PGDB.
 """
 return self.sendPgdbFnCallBool('frameid-instance-p', Symbol(frameid))

[docs] def get_class_all_instances(self, className):
 """
 Get all instances of the given class name for this PGDB.
 ClassName must be exactly as Pathway Tools expect the name of the class,
 no conversion is applied.

 Parm
 className, a symbol specified as a string (e.g., '|Reactions|')

 Returns
 list of frameids
 """
 return self.sendPgdbFnCallList('gcai', Symbol(className))

[docs] def get_class_all_subs(self, classArg):
 """
 Get all subclasses of the given class name for this PGDB.
 If classArg is a string, it must be exactly as Pathway Tools expect the name of the class,
 no conversion is applied.

 Parm
 classArg, a symbol specified as a string (e.g., '|Reactions|') or as
 a PFrame.

 Returns
 list of frameids corresponding to the subclasses of the classArg.
 """
 return self.sendPgdbFnCallList('get-class-all-subs', classArg)

[docs] def run_fba(self, fileName):
 """
 In PythonCyc there is a run_fba method defined globally in the pythoncyc
 module and there is this version which is run under a specific PGDB.
 Notice though that the FBA input file provided will decide which organism
 is used for running FBA and may override this PGDB.

 Parms
 fileName, a string which is the name of the FBA input file on the
 running Pathway Tools machine.

 Returns
 A list with the following values:
 1) True <=> success, the FBA completed without error (for growth, see 5)
 2) List of error messages, if any
 3) List of output messages generated by MetaFlux (FBA module) during parsing
 and execution
 4) The solver (SCIP) status symbol
 5) The flux of the objective biomass, non-zero if growth
 6) Number of growth cases if FBA input file is a knockout run,
 or the number of active reactions if the FBA input file is solving a model
 7) The list of reactions that were in the model after instantiation
 8) The list of reactions that were active (non zero flux) with their fluxes
 """
 return self.sendPgdbFnCall('python-run-fba', fileName)

[docs] def get_slot_values(self, frameid, slotName):
 """
 Return the slot values of a frame object.
 Parms
 frameid
 a string representing the unique identifier for a frame object.
 slotName
 a string representing the slot of the frame object.

 Returns
 list of values of the given slot. Values can be frameids, booleans,
 strings, or numbers.

 Example:
 To get the substrates participating on the left of reaction RXN-9000:
 meta.get_slot_values('RXN-9000', 'LEFT')
 where meta is a variable bound to a PGDB object.
 """
 return self.sendPgdbFnCallList('get-slot-values', Symbol(frameid), Symbol(slotName))

[docs] def put_slot_values(self, frameid, slotName, val):
 """
 Modify the slot values of a frame object with the given val. Val is typically
 a list of objects.

 Important: The modified frame is not updated for any PFrame object that might has been
 previously loaded from that PGDB. This operation should be used only
 for its effect on the PGDB in the running Pathway Tools application.
 Parms
 frameid
 a string representing the unique identifier for a frame object.
 slotName
 a string representing the slot of the frame object.
 val
 a value to store in the slot, typically a list of values or objects.
 Side-Effects
 The slot of that frame is replaced with the new value.

 Returns
 Nothing
 Example:
 To put the substrates participating on the left of reaction RXN-9000:
 put_slot_values('RXN-9000', 'LEFT', ['CPD-9459','CPD-9460'])
 """
 return self.sendPgdbFnCallList('put-slot-values', Symbol(frameid), Symbol(slotName), val)

[docs] def put_slot_value(self, frameid, slotName, val):
 """
 Modify the slot value of a frame object with the given val. Val is a single
 value (e.g., not a list).

 Important: The modified frame is not updated for any PFrame object that might has been
 previously loaded from that PGDB. This operation should be used only
 for its effect on the PGDB in the running Pathway Tools application.

 Parms
 frameid
 a string representing the unique identifier for a frame object.
 slotName
 a string representing the slot of the frame object.
 val
 a value to store in the slot.

 Side-Effects
 The slot of that frame is replaced with the new value

 Returns
 Nothing
 Example:
 To put the Gibbs free energy of reaction RXN-9000:
 put_slot_value('RXN-9000', 'GIBBS-0', 7.52)
 """
 return self.sendPgdbFnCall('put-slot-value', Symbol(frameid), Symbol(slotName), val)

[docs] def get_slot_value(self, frameid, slotName):
 """
 Return the single slot value of a frame object.
 Parms
 frameid
 a string representing the unique identifier for a frame object.
 slotName
 a string representing the slot of the frame object.
 Example:
 To get the substrates participating on the left of reaction RXN-9000:
 get_slot_values('RXN-9000', 'LEFT')
 """
 return self.sendPgdbFnCall('get-slot-value', Symbol(frameid), Symbol(slotName))

[docs] def all_pathways(self, selector='all', base=False):
 """
 Description
 Returns a list of pathway instance frames of a specified type.
 Parms
 selector
 Selects whether all pathways, or just
 small-molecule metabolism base pathways. Can take either
 'all' or 'small-molecule'. Defaults to 'all'.
 base
 If this boolean parameter is True, only includes
 base pathways. Otherwise, all pathways, including
 superpathways, will be returned.

 Return value
 A list of instances of class Pathways.
 """
 return self.sendPgdbFnCallList('all-pathways', mkey(selector), base)

[docs] def all_reactions(self, type='metab-smm'):
 return self.all_rxns(type)

[docs] def all_rxns(self, type='metab-smm'):
 """
 Description
 Returns a set of reactions that fall within a particular category.
 Parms
 type
 The type of reaction to return. Defaults to
 'metab-smm'. The possible values are:

 'all'
 All reactions.
 'metab-pathways'
 All reactions found within metabolic pathways. Includes
 reactions that are pathway holes. May include a handfull
 of reactions whose substrates are macromolecules, e.g.,
 ACP. Excludes transport reactions.
 'metab-smm'
 All reactions of small molecule metabolism, whether or
 not they are present in a pathway. Subsumes
 metab-pathways.
 'metab-all'
 All enzyme-catalyzed reactions. Subsumes metab-smm.
 'enzyme'
 All enzyme-catalyzed reactions (i.e., instances of
 either EC-Reactions class or Unclassified-Reactions class).
 'transport'
 All transport reactions.
 'small-molecule'
 All reactions whose substrates are all small molecules,
 as opposed to macromolecules. Excludes transport reactions.
 'protein-small-molecule-reaction'
 One of the substrates of the reaction is a
 macromolecule, and one of the substrates of the reaction
 is a small molecule.
 'protein-reaction'
 All substrates of the reaction are proteins.
 'trna-reaction'
 One of the substrates of the reaction is a tRNA.
 'spontaneous'
 Spontaneous reactions.
 'non-spontaneous'
 Non-spontaneous reactions that are likely to be enzyme
 catalyzed. Some reactions will be returned for type
 non-spontaneous that will not be returned by enzyme.

 Return value
 A list of reaction frame ids.
 """
 return self.sendPgdbFnCallList('all-rxns', mkey(type))

[docs] def all_substrates(self, rxns):
 """
 Description
 Returns all unique substrates used in the reactions specified by
 the parameter rxns.
 Parms
 rxns
 A list of reaction PFrames or frame ids.

 Return value
 A list of compound frame ids. There might be strings in the list,
 as the left and right slots of a reaction frame can
 contain strings.
 """
 return self.sendPgdbFnCallList('all-substrates', may_be_frameid(rxns))

[docs] def all_cofactors(self):
 """
 Description
 Return a list of all cofactors used in the current PGDB.
 Parms
 None.

 Return value
 A list of cofactor frame ids.
 """
 return self.sendPgdbFnCallList('all-cofactors')

[docs] def all_modulators(self):
 """
 Description
 Enumerate all of the modulators, or direct regulators, in the
 current PGDB.
 Parms
 None.

 Return value
 A list of regulator frame ids.
 """
 return self.sendPgdbFnCallList('all-modulators')

[docs] def all_sigma_factors(self):
 """
 Description
 Enumerate all RNA polymerase sigma factors.
 Parms
 None.

 Return value
 A list of all instances of the class Sigma-Factors.
 """
 return self.sendPgdbFnCallList('all-sigma-factors')

[docs] def all_operons(self):
 """
 Description
 Enumerates all operons. In this case, an operon is defined as a
 list of overlapping instances of Transcription-Units.
 Parms
 None.

 Return value
 A list of lists of Transcription-Units, where all
 Transcription-Units in the list belong to the same operon.
 """
 return self.sendPgdbFnCallList('all-operons')

[docs] def all_transporters(self):
 """
 Description
 Enumerate all transport proteins.
 Parms
 None.

 Return value
 A list of instances of class Proteins.
 """
 return self.sendPgdbFnCallList('all-transporters')

[docs] def all_transported_chemicals(self, from_compartment=None, to_compartment=None, primary_only=False):
 """
 Description
 Enumerates all chemicals transported by transport reactions in
 the current PGDB.
 Parms

 from_compartment
 Keyword, The compartment that the chemical is
 coming from (see Cellular Component Ontology).
 to_compartment
 Keyword, The compartment that the chemical is
 going to (see Cellular Component Ontology).
 primary_only
 Keyword, If True, filter out common transport
 compounds, such as protons and Na+.

 Return value
 A list of compound frame ids.
 """
 kwargs = {'from-compartment': may_be_frameid(from_compartment),
 'to-compartment': may_be_frameid(to_compartment),
 'primary-only?': primary_only}
 return self.sendPgdbFnCallList('all-transported-chemicals', **kwargs)

[docs] def all_protein_complexes(self, filter='all'):
 """
 Description
 Enumerates different types of protein complexes.
 Parms
 filter
 Keyword, The type of protein complexes to return. The
 argument must be one of the following values:

 'all'
 Return all protein complexes.
 'hetero'
 Return all heteromultimers.
 'homo'
 Return all homomultimers.

 Return value
 A list of protein complex frame ids.
 """
 kwargs = {'filter': mkey(filter)}
 return self.sendPgdbFnCallList('all-protein-complexes', **kwargs)

[docs] def all_transcription_factors(self, allow_modified_forms=True):
 """
 Description
 Enumerates all transcription factors, or just unmodified forms
 of transcription factors.
 Parms
 allow_modified_forms
 Keyword, A boolean value. If True, modified and
 unmodified forms of the protein are returned. If false, then
 only unmodified forms of the proteins are returned. The
 default value is t.

 Return value
 A list of protein frame ids that are transcription factors.
 """
 kwargs = {'allow-modified-forms?': allow_modified_forms}
 return self.sendPgdbFnCallList('all-transcription-factors', **kwargs)

[docs] def all_genetic_regulation_proteins(self, allow_modified_forms=True, class_name=None):
 """
 Description
 Enumerates all proteins that are involved in genetic regulation
 of a particular given class. Optionally, just unmodified forms
 of the proteins are returned.
 Parms
 class_name
 Keyword, The class Regulation or a subclass.
 It defaults to Regulation-of-Transcription-Initiation.
 allow_modified_forms
 Keyword, A boolean value. If True, modified and
 unmodified forms of the protein are returned. If false, then
 only unmodified forms of the proteins are returned. The
 default value is True.

 Return value
 A list of protein frames that are involved in the specified form
 of regulation.
 """
 kwargs = {'allow-modified-forms?': allow_modified_forms,
 'class' : Symbol(class_name)}
 return self.sendPgdbFnCallList('all-genetic-regulation-proteins', **kwargs)

[docs] def rxns_w_isozymes(self, rxns=None):
 """
 Description
 Enumerate all reactions that have isozymes (distinct proteins or
 protein classes that catalyze the same reaction).
 Parms
 rxns
 Keyword, A list of instances of the class
 Reactions. Defaults to the result of (all-rxns :enzyme).

 Return value
 A list of A list of instances of the class Reactions with
 isozymes.
 """
 kwargs = {'rxns': may_be_frameid(rxns)}
 return self.sendPgdbFnCallList('rxns-w-isozymes', **kwargs)

[docs] def rxns_catalyzed_by_complex(self, rxns=None):
 """
 Description
 Enumerates all reactions catalyzed by an enzyme that is a
 protein complex.
 Parms
 rxns
 Keyword, A list of instances of the class
 Reactions. Defaults to the result of (all-rxns :enzyme).

 Return value
 A list of instances of the class Reactions with a protein
 complex as an enzyme.
 """
 kwargs = {'rxns': may_be_frameid(rxns)}
 return self.sendPgdbFnCallList('rxns-catalyzed-by-complex', **kwargs)

[docs] def all_enzymes(self, type=None):
 """
 Description
 Return all enzymes of a given type.
 Parms
 type
 Keyword, A type as taken from the parameter to
 fn enzyme. Defaults to 'chemical-change'.

 Return value
 A list of instances of class Proteins.
 """
 kwargs = {'type': type}
 return self.sendPgdbFnCallList('all-enzymes', **kwargs)

[docs] def genes_of_reaction(self, rxn):
 """
 Description
 Return all genes that encode the enzymes of a given reaction.
 Parms
 rxn
 An instance of the class Reactions, a frame id or PFrame.

 Return value
 A list of instances of class Genes.
 """
 return self.sendPgdbFnCallList('genes-of-reaction', may_be_frameid(rxn))

[docs] def substrates_of_reaction(self, rxn):
 """
 Description
 Return all of the reactants and products of a given reaction.
 Parms
 rxn
 An instance of the class Reactions, a frame id or PFrame.

 Return value
 A list that may consist of children of class Compounds,
 children of class Polymer-Segments, or strings.
 """
 return self.sendPgdbFnCallList('substrates-of-reaction', may_be_frameid(rxn))

[docs] def enzymes_of_reaction(self, rxn, species=None, experimental_only=None, local_only=None):
 """
 Description
 Return the enzymes that catalyze a given reaction.
 Parms
 rxn
 An instance of the class Reactions, a frame id or PFrame.
 species
 Keyword, A list of species, such that in a
 multi-organism PGDB such as MetaCyc, only proteins found in
 those organisms will be returned. This list can include
 valid org-ids, children of class Organisms, and
 strings. Please see the documentation for the species
 slot-unit for more information. Default value is nil.
 experimental_only
 Keyword, When True, only return enzymes that have
 a non-computational evidence code associated with it.
 local_only
 Keyword, When True, only return enzymes that
 catalyze the specific form of the reaction, as opposed to
 enzymes that are known to catalyze a more general form
 (i.e., class) of the reaction.

 Return value
 A list of children of class Proteins or class
 Protein-RNA-Complexes.
 """
 kwargs = {'species': species,
 'experimental-only?': experimental_only,
 'local-only-p': local_only}
 return self.sendPgdbFnCallList('enzymes-of-reaction', may_be_frameid(rxn), **kwargs)

[docs] def reaction_reactants_and_products(self, rxn, direction=None, pwy=None):
 """
 Description
 Return the reactants and products of a reaction, based on a
 specified direction. The direction can be specified explicity or
 by giving a pathway as an argument. It is an error to both
 specify the pathway and the explicit direction. If neither an
 explicit direction or a pathway is given as an argument, then
 the direction is computationally inferred from available
 evidence within the PGDB.
 Parms
 rxn
 An instance of the class Reactions, that is, a frame id or PFrame.
 direction
 Keyword, Can take on the following values:

 'L2R'
 The reaction direction goes from 'left to right', as
 described in the Reactions instance.
 'R2L'
 The reaction direction goes from 'right to left'; the
 opposite of what is described in the Reactions
 instance.

 pwy
 Keyword, An instance of the class Pathways, a frame id or PFrame.

 Return value
 Returns multiple values as a list. The first value is a list of reactants
 as determined by the direction of the reaction, and the second
 value is a list of the products as determined by the direction
 of the reaction. Both lists have items that are children of
 class Compounds, children of class Polymer-Segments, or
 strings.
 """
 kwargs = {'direction': direction, 'pwy': may_be_frameid(pwy)}
 return self.sendPgdbFnCall('reaction-reactants-and-products', may_be_frameid(rxn), **kwargs)

[docs] def reaction_type(self, rxn):
 """
 Description
 Returns a keyword describing the type of reaction.
 Parms
 rxn
 An instance of the class Reactions, a frame id or PFrame.

 Return value
 A string from the following list:

 'small-molecule'
 All substrates are small molecules, or small-molecule classes.
 'transport'
 A substrate is marked with different compartment annotations
 in the left and right slots.
 'protein-small-molecule-reaction'
 At least one substrate is a protein and at least one is a
 small molecule.
 'protein-reaction'
 All substrates are proteins.
 'trna-reaction'
 At least one substrate is a tRNA.
 'null-reaction'
 No substrates or reactants are specified.
 'other'
 None of the preceding cases apply.
 """
 return self.sendPgdbFnCall('reaction-type', may_be_frameid(rxn))

[docs] def rxn_without_sequenced_enzyme_p(self, rxn, complete=None):
 """
 Description
 A predicate that tests if a given reaction has genes with no
 associated sequence information.
 Parms
 rxn
 An instance of the class Reactions, that is, a frame id or PFrame.
 complete
 Keyword, if True, the predicate will return True when there
 is any associated gene without a sequence. If False, the
 predicate will return True when all associated genes are
 without a sequence.

 Return value
 A boolean value.
 """
 kwargs = {'complete': complete}
 return self.sendPgdbFnCallBool('rxn-without-sequenced-enzyme-p', may_be_frameid(rxn), **kwargs)

[docs] def pathway_hole_p(self, rxn, hole_if_any_gene_without_position=None):
 """
 Description
 A predicate that determines if the current reaction is
 considered to be a 'pathway hole', or without an associated enzyme.
 Parms
 rxn
 An instance of the class Reactions, a frame id or PFrame.
 hole_if_any_gene_without_position
 Keyword, If True, then genes without specified
 coordinates for the current organism's genome are not
 counted when determining the status of the reaction.

 Return value
 A boolean value.
 """
 kwargs = {'hole-if-any-gene-without-position?': hole_if_any_gene_without_position}
 return self.sendPgdbFnCallBool('pathway-hole-p', may_be_frameid(rxn), **kwargs)

[docs] def rxn_present_p(self, rxn):
 """
 Description
 A predicate that determines if there is evidence for the
 occurrence of the given reaction in the current PGDB.
 Parms
 rxn
 An instance of the class Reactions, that is, a frame id or PFrame.

 Return value
 A boolean value.
 """
 return self.sendPgdbFnCallBool('rxn-present-p', may_be_frameid(rxn))

[docs] def rxn_specific_form_of_rxn_p(self, specific_rxn, generic_rxn):
 """
 Description
 A predicate that is True if the given generic reaction is a
 generalized form of the given specific reaction.
 Parms
 specific_rxn
 A child of the class Reactions, that is, a frame id or PFrame.
 generic_rxn
 A child of the class Reactions, that is, a frame id or PFrame.

 Return value
 A boolean value.
 """
 return self.sendPgdbFnCallBool('rxn-specific-form-of-rxn-p', may_be_frameid(specific_rxn), may_be_frameid(generic_rxn))

[docs] def nonspecific_forms_of_rxn(self, rxn):
 """
 Description
 Return all of the generic forms of the given specific reaction.
 Not every reaction will necessarily have a generic form.
 Parms
 rxn
 An instance of the class Reactions, that is, a frame id or PFrame.

 Return value
 A list of children of the class Reactions.
 """
 return self.sendPgdbFnCallList('nonspecific-forms-of-rxn', may_be_frameid(rxn))

[docs] def specific_forms_of_rxn(self, rxn):
 """
 Description
 Return all of the specific forms of the given generic reaction.
 Not every reaction will necessarily have a specific form.
 Parms
 rxn
 A child of the class Reactions, that is, a frame id or PFrame.

 Return value
 A list of instances of the class Reactions.
 """
 return self.sendPgdbFnCallList('specific-forms-of-rxn', may_be_frameid(rxn))

[docs] def rxn_in_compartment_p(self, rxn, compartments, default_ok=None, pwy=None, loose=None):
 """
 Description
 A predicate that checks if the given reaction is present in a
 list of cellular compartments.
 Parms
 rxn
 An instance of the class Reactions, a frame id or PFrame.
 compartments
 A list of cellular compartments, as defined in the Cellular
 Components Ontology. See frame CCO.
 default_ok
 Keyword, If True, then we return True if the
 reaction has no associated compartment information, or one
 of its associated locations is a super-class of one of the
 members of the compartments parameter.
 pwy
 Keyword, a frame id or PFrame.
 If supplied, the search for associated
 enzymes of the parameter rxn is limited to the given child
 of Pathways.
 loose
 Keyword, boolean. If True, then the compartments
 CCO-CYTOPLASM and CCO-CYTOSOL are treated as being the
 same compartment.

 Return value
 A boolean value.
 """
 kwargs = {'default-ok?': default_ok, 'pwy': may_be_frameid(pwy), 'loose': loose}
 return self.sendPgdbFnCallBool('rxn-in-compartment-p', may_be_frameid(rxn), compartments, **kwargs)

[docs] def compartment_of_rxn(self, rxn, default=None):
 """
 Description
 Returns the compartment of the reaction for non-transport
 reactions.
 Parms
 rxn
 An instance of the class Reactions, that is, a frame id or PFrame.
 default
 Keyword, The default compartment for reactions without any
 compartment annotations on their substrates. The default
 value is CCO-CYTOSOL.

 Return value
 A child of the class CCO.
 """
 return self.sendPgdbFnCall('compartment-of-rxn', may_be_frameid(rxn), default)

[docs] def compartments_of_reaction(self, rxn, sides=None, default_compartment=None):
 """
 Description
 Returns the compartments associated with the given reaction.
 Parms
 rxn
 An instance of the class Reactions, a frame id or PFrame.
 sides
 Keyword, The slots of the reaction to consider.
 The default value is (LEFT RIGHT).
 default_compartment
 Keyword,
 The default compartment, as determined by the function
 (default-compartment), which currently is set to
 CCO-CYTOSOL.

 Return value
 A list of children of the class CCO.
 """
 kwargs = {'sides': sides, 'default-compartment': may_be_frameid(default_compartment)}
 return self.sendPgdbFnCallList('compartments-of-reaction', may_be_frameid(rxn), **kwargs)

[docs] def transported_chemicals(self, rxn, side=None, primary_only=None,
 from_compartment=None, to_compartment=None, show_compartment=None):
 """
 Description
 Return the compounds in a transport reaction that change
 compartments.
 Parms
 rxn
 An instance of the class Reactions, a frame id or PFrame.
 side
 Keyword, The side of the reaction from which to
 return the transported compound.
 primary_only
 Keyword, If True, then filter out common
 exchangers (currently defined as (PROTON NA CPD-1)+). If
 True, and the only transported compounds are in this list,
 then the filter doesn't apply.
 from_compartment
 Keyword, A compartment (child of class CCO).
 If specified, then only return compounds transported from
 that compartment.
 to_compartment
 Keyword, A compartment (child of class CCO).
 If specified, then only return compounds transported to that
 compartment.
 show_compartment
 Keyword, A compartment (child of class CCO).
 If specified, and the compound is modified during transport,
 then only return the form of the compound as found in this
 compartment.

 Return value
 A list of children of class Compounds.
 """
 kwargs = {'side': side,
 'primary-only?': primary_only,
 'from-compartment': may_be_frameid(from_compartment),
 'to-compartment': may_be_frameid(to_compartment),
 'show-compartment': may_be_frameid(show_compartment)}
 return self.sendPgdbFnCallList('transported-chemicals', may_be_frameid(rxn), **kwargs)

[docs] def get_predecessors(self, rxn, pwy):
 """
 Description
 Return a list of all reactions that are direct predecessors
 (i.e., occurr earlier in the pathway) of the given reaction in
 the given pathway.
 Parms
 rxn
 An instance of the class Reactions, a frame id or PFrame.
 pwy
 A child of the class Pathways.

 Return value
 A list of instances of the class Reactions.
 """
 return self.sendPgdbFnCallList('get-predecessors', may_be_frameid(rxn), may_be_frameid(pwy))

[docs] def get_successors(self, rxn, pwy):
 """
 Description
 Return a list of all reactions that are direct successors (i.e.,
 occurr later in the pathway) of the given reaction in the given
 pathway.
 Parms
 rxn
 An instance of the class Reactions, a frame id or PFrame.
 pwy
 A child of the class Pathways.

 Return value
 A list of instances of the class Reactions.
 """
 return self.sendPgdbFnCallList('get-successors', may_be_frameid(rxn), may_be_frameid(pwy))

[docs] def rxn_w_isozymes_p(self, rxn):
 """
 Description
 A predicate that tests if a given reaction has any associated
 isozymes (distinct proteins or protein classes that catalyze the
 same reaction).
 Parms
 rxn
 An instance of the class Reactions, a frame id or PFrame.

 Return value
 A boolean value.
 """
 return self.sendPgdbFnCallBool('rxn-w-isozymes-p', may_be_frameid(rxn))

[docs] def genes_of_pathway(self, pwy, sorted=None):
 """
 Description
 Return all genes coding for enzymes in the given pathway.
 Parms
 pwy
 An instance of the class Pathways, a frame id or PFrame.
 sorted?
 Keyword, If True, the genes are sorted in the
 order in which the corresponding reaction occurrs in the
 sequence of the pathway.

 Return value
 A list of instances of class Genes.
 """
 kwargs = {'sorted': sorted}
 return self.sendPgdbFnCallList('genes-of-pathway', may_be_frameid(pwy), **kwargs)

[docs] def enzymes_of_pathway(self, pwy, species=None, experimental_only=None, sorted=None):
 """
 Description
 Return all enzymes that are present in the given pathway.
 Parms

 pwy
 An instance of the class Pathways, a frame id or PFrame.
 species
 Keyword, A list of species, such that in a
 multi-organism PGDB such as MetaCyc, only proteins found in
 those organisms will be returned. This list can include
 valid org-ids, children of class Organisms, and
 strings. Please see the documentation for the species
 slot-unit for more information.
 experimental_only
 Keyword, When True, only return enzymes that have
 a non-computational evidence code associated with it.
 sorted
 Keyword, If True, the enzymes are sorted in the
 order in which the corresponding reaction occurrs in the
 sequence of the pathway.

 Return value
 A list of children of class Proteins or class
 Protein-RNA-Complexes.
 """
 kwargs = {'species': species, 'experimental-only?': experimental_only, 'sorted': sorted}
 return self.sendPgdbFnCallList('enzymes-of-pathway', may_be_frameid(pwy), **kwargs)

[docs] def compounds_of_pathway(self, pwy):
 """
 Description
 Return all substrates of all reactions that are within the given
 pathway.
 Parms

 pwy
 An instance of the class Pathways, a frame id or PFrame.

 Return value
 A list of children of class Compounds, children of class
 Polymer-Segments, or strings.
 """
 return self.sendPgdbFnCallList('compounds-of-pathway', may_be_frameid(pwy))

[docs] def substrates_of_pathway(self, pwy):
 """
 Description
 Bearing in mind the direction of all reactions within a pathway,
 this function returns the substrates of the reactions in four
 groups: a list of all reactant compounds (compounds occurring on
 the left side of some reaction in the given pathway), the list
 of proper reactants (the subset of reactants that are not also
 products), a list of all products, and a list of all proper
 products.
 Parms

 pwy
 An instance of the class Pathways, a frame id or PFrame.

 Return value
 Four values as a list, each of which is a list of substrates. A substrate
 may be a child of class Compounds, a child of class
 Polymer-Segments, or a string.
 """
 return self.sendPgdbFnCall('substrates-of-pathway', may_be_frameid(pwy))

[docs] def variants_of_pathway(self, pwy):
 """
 Description
 Returns all variants of a pathway.
 Parms

 pwy
 An instance of the class Pathways, a frame id or PFrame.

 Return value
 A list of instance of the class Pathways.
 """
 return self.sendPgdbFnCallList('variants-of-pathway', may_be_frameid(pwy))

[docs] def pathway_components(self, pwy, rxn_list=None, pred_list=None):
 """
 Description
 Returns all of the connected components of a pathway. A
 connected component of a pathway is a set of reactions in the
 pathway such that for all reactions R1 in the connected
 component, a predecessor relationship holds between R1 and some
 other reaction R2 in the connected component, and each connected
 component is of maximal size. Every pathway will have from 1 to
 N connected components, where N is the number of reactions in
 the pathway. Most pathways have one connected component, but not
 all.
 Parms

 pwy, a frame id or PFrame.
 An instance of the class Pathways, which is not a
 super-pathway (i.e., does not have any entries in its
 sub-pathways slot).
 rxn_list
 Keyword, The list of reactions to use as the starting list
 of connected component clusters. Defaults to
 the content of slot reaction-list in pwy.

 pred_list
 Keyword, The list of reaction predecessors to iterate from
 in order to cluster the reactions in rxn-list. Defaults to
 list in slot predecessors of pwy.

 Return value
 Returns three values as a list: the connected components as a list of
 lists of the form ((r1 r2 r3) (r4 r5) (r6 r7 r8)) where each
 sub-list contains all reactions in one connected component, the
 number of connected components, and the length of the reaction
 list.
 """
 kwargs = {'rxn-list': may_be_frameid(rxn_list), 'pred-list': may_be_frameid(pred_list)}
 return self.sendPgdbFnCall('pathway-components', may_be_frameid(pwy), **kwargs)

[docs] def noncontiguous_pathway_p(self, pwy):
 """
 Description
 A predicate that determines if the pathway contains more than
 one connected component. See function pathway-components for
 more explanation.
 Parms

 pwy
 An instance of the class Pathways, a frame id or PFrame.

 Return value
 A boolean value.
 """
 return self.sendPgdbFnCallBool('noncontiguous-pathway-p', may_be_frameid(pwy))

[docs] def rxns_adjacent_in_pwy_p(self, rxn1, rxn2, pwy):
 """
 Description
 A predicate to determine if two given reactions are adjacent to
 one another in the given pathway.
 Parms

 rxn1
 An instance of the class Reactions, a frame id or PFrame.
 rxn2
 An instance of the class Reactions, a frame id or PFrame.
 pwy
 An instance of the class Pathways, a frame id or PFrame.

 Return value
 A boolean value.
 """
 return self.sendPgdbFnCallBool('rxns-adjacent-in-pwy-p', may_be_frameid(rxn1), may_be_frameid(rxn2), may_be_frameid(pwy))

[docs] def cofactors_and_pgroups_of_enzrxn(self, enzrxn):
 """
 Description
 Returns the cofactors and prosthetic groups of an enzymatic
 reaction.
 Parms

 enzrxn
 An instance of the class Enzymatic-Reactions, a frame id or PFrame.

 Return value
 A list of children of class Chemicals or strings,
 representing cofactors and/or prosthetic groups.
 """
 return self.sendPgdbFnCallList('cofactors-and-pgroups-of-enzrxn', may_be_frameid(enzrxn))

[docs] def enzrxn_activators(self, er, phys_relevant_only=None):
 """
 Description
 Returns the list of activators (generally small molecules) of
 the enzymatic reaction frame.
 Parms

 er
 An instance of the class Enzymatic-Reactions, a frame id or PFrame.
 phys_relevant_only
 Keyword, If True, then only return activators that are
 associated with Regulation instances that have the
 physiologically-relevant? slot set to True.

 Return value
 A list of children of the class Chemicals.
 """
 # phys_relevant_only is optional for the Lisp version
 return self.sendPgdbFnCallList('enzrxn-activators', may_be_frameid(er), phys_relevant_only)

[docs] def enzrxn_inhibitors(self, er, phys_relevant_only=None):
 """
 Description
 Returns the list of inhibitors (generally small molecules) of
 the enzymatic reaction frame.
 Parms

 er
 An instance of the class Enzymatic-Reactions, a frame id or PFrame.
 phys_relevant_only
 Keyword, If True, then only return inhibitors that are
 associated with Regulation instances that have the
 physiologically-relevant? slot set to True.

 Return value
 A list of children of the class Chemicals.
 """
 # phys_relevant_only is optional for the Lisp version
 return self.sendPgdbFnCallList('enzrxn-inhibitors', may_be_frameid(er), phys_relevant_only)

[docs] def pathways_of_enzrxn(self, enzrxn, include_super_pwys=None):
 """
 Description
 Returns the list of pathways in which the given enzymatic
 reaction participates.
 Parms

 enzrxn
 An instance of the class Enzymatic-Reactions, a frame id or PFrame.
 include_super_pwys
 Keyword, If True, then not only will the
 direct pathways in which enzrxn is associated in be
 returned, but also any enclosing super-pathways. If enzrxn
 is associated with a reaction that is directly associated
 with a super-pathway, then the function might return
 super-pathways even if this option is nil.

 Return value
 A list of instances of class Pathways.
 """
 kwargs = {'include-super-pwys?': include_super_pwys}
 return self.sendPgdbFnCallList('pathways-of-enzrxn', may_be_frameid(enzrxn), **kwargs)

[docs] def pathway_allows_enzrxn(self, pwy, rxn, enzrxn, single_species=None):
 """
 Description
 A predicate which returns a True value if the given pathway
 allows the given enzymatic reaction to catalyze the given
 reaction. Certain pathways have a list of enzymatic reactions
 that are known not to catalyze certain reactions. See the
 documentation of slot-unit enzyme-use for more information.
 Parms

 pwy
 An instance of the class Pathways, a frame id or PFrame.
 rxn
 An instance of the class Reactions, a frame id or PFrame.
 enzrxn
 An instance of the class Enzymatic-Reactions, a frame id or PFrame.
 single_species
 Keyword, An instance of the class Organisms If set,
 then enzrxn has the further stricture that it must be an
 enzymatic reaction present in the organism specified by the
 value passed to single-species.

 Return value
 A boolean value.
 """
 # single_species is optional for the Lisp version.
 return self.sendPgdbFnCallBool('pathway-allows-enzrxn', may_be_frameid(pwy), may_be_frameid(rxn), may_be_frameid(enzrxn), single_species)

[docs] def monomers_of_protein(self, p, coefficients=None, unmodify=None):
 """
 Description
 Returns the monomers of the given protein complex.
 Parms

 p
 An instance of the class Proteins, a frame id or PFrame.
 coefficients
 Keyword, If True, then the second return value of
 the function will be a list of monomer coefficients.
 Defaults to True.
 unmodify
 Keyword, If True, obtain the monomers of the
 unmodified form of p.

 Return value
 First value is a list of instances of the class Proteins. If
 coefficients? is True, then the second value is the
 corresponding coefficients of the monomers fromthe first return
 value.
 """
 kwargs = {'coefficients?': coefficients, 'unmodify?': unmodify}
 return self.sendPgdbFnCallList('monomers-of-protein', may_be_frameid(p), **kwargs)

[docs] def base_components_of_protein(self, p, exclude_small_molecules=None):
 """
 Description
 Same as function monomers-of-protein, but also returns
 components of the protein that are RNAs or compounds, not just
 polypeptides.
 Parms

 p
 An instance of the class Proteins, a frame id or PFrame.
 exclude_small_molecules
 Keyword, If nil, then small molecule components
 are also returned. Default value is True.

 Return value
 Two values as a list. The first value is a list of the components, which
 can be instances of the following classes: Polypeptides,
 RNA, and Compounds. The second value is a list of the
 corresponding coefficients of the components in the first value.
 """
 kwargs = {'exclude-small-molecules?': exclude_small_molecules}
 return self.sendPgdbFnCall('base-components-of-protein', may_be_frameid(p), **kwargs)

[docs] def containers_of(self, protein, exclude_self=None):
 """
 Description
 Return all complexes of which the given protein is a direct or
 indirect component.
 Parms

 protein
 An instance of the class Proteins, a frame id or PFrame.
 exclude_self
 Keyword, If True, then protein will not be included in
 the return value.

 Return value
 A list of instances of the class Proteins.
 """
 # exclude_self is an optional parameter for the Lisp fn version.
 return self.sendPgdbFnCallList('containers-of', may_be_frameid(protein), exclude_self)

[docs] def protein_or_rna_containers_of(self, protein, exclude_self=None):
 """
 Description
 This function is the same as the function containers-of,
 except that it only includes containers that are instances of
 either class Protein-Complexes, or class
 Protein-RNA-Complexes.
 Parms

 protein
 An instance of the class Proteins, a frame id or PFrame.
 exclude_self
 Keyword, If True, then protein will not be included in
 the return value.

 Return value
 A list of instances of the class Proteins.
 """
 # exclude_self is an optional parameter for the Lisp fn version.
 return self.sendPgdbFnCallList('protein-or-rna-containers-of', may_be_frameid(protein), exclude_self)

[docs] def homomultimeric_containers_of(self, protein, exclude_self=None):
 """
 Description
 This function is the same as the function containers-of,
 except that it only includes containers that are homomultimers.
 Parms

 protein
 An instance of the class Proteins, a frame id or PFrame.
 exclude_self
 Keyword, If True, then protein will not be included in
 the return value.

 Return value
 A list of instances of the class Proteins.
 """
 # exclude_self is an optional parameter for the Lisp fn version.
 return self.sendPgdbFnCallList('homomultimeric-containers-of', may_be_frameid(protein), exclude_self)

[docs] def polypeptide_or_homomultimer_p(self, protein):
 """
 Description
 A predicate that determines if the given protein is a
 polypeptide or a homomultimer.
 Parms

 protein
 An instance of the class Proteins, a frame id or PFrame.

 Return value
 A boolean value.
 """
 return self.sendPgdbFnCallBool('polypeptide-or-homomultimer-p', may_be_frameid(protein))

[docs] def unmodified_form(self, protein):
 """
 Description
 Return the unmodified form of the given protein, which might be
 the same as the given protein.
 Parms

 protein
 An instance of the class Proteins, a frame id or PFrame.

 Return value
 An instance of the class Proteins.
 """
 return self.sendPgdbFnCall('unmodified-form', may_be_frameid(protein))

[docs] def unmodified_or_unbound_form(self, protein):
 """
 Description
 Return the unmodified form or unbound (to a small molecule) form
 of the given protein, which might be the same as the given protein.
 Parms

 protein
 An instance of the class Proteins, a frame id or PFrame.

 Return value
 An instance of the class Proteins.
 """
 return self.sendPgdbFnCall('unmodified-or-unbound-form', may_be_frameid(protein))

[docs] def reduce_modified_proteins(self, prots, debind=None):
 """
 Description
 Given a list of proteins, the function converts all of the
 proteins to their unmodified form, and then removes any
 duplicates from the subsequent list.
 Parms

 prots
 A list of instances of the class Proteins, a frame id or PFrame.
 debind
 Keyword, When True, the proteins are further
 simplified by obtaining the unbound form of the protein, if
 it is bound to a small molecule.

 Return Value
 A list of instances of the class Proteins.
 """
 kwargs = {'debind?': debind}
 return self.sendPgdbFnCallList('reduce-modified-proteins', may_be_frameid(prots), **kwargs)

[docs] def all_direct_forms_of_protein(self, protein):
 """
 Description
 Given a protein, this function will return all of the directly
 related proteins of its modified and unmodified forms, meaning
 all of their direct subunits and all of their direct containers.
 Parms

 protein
 An instance of the class Proteins, a frame id or PFrame.

 Return Value
 A list of instances of the class Proteins.
 """
 return self.sendPgdbFnCallList('all-direct-forms-of-protein', may_be_frameid(protein))

[docs] def all_forms_of_protein(self, protein):
 """
 Description
 Given a protein, this function will return all of the related
 proteins of its modified and unmodified forms, meaning all of
 their subunits and all of their containers. Unlike
 all_direct_forms_of_protein, this function is not limited to
 the direct containers only.
 Parms

 protein
 An instance of the class Proteins, a frame id or PFrame.

 Return value
 A list of instances of the class Proteins.
 """
 return self.sendPgdbFnCallList('all-forms-of-protein', may_be_frameid(protein))

[docs] def modified_forms(self, protein, exclude_self=None, all_variants=None):
 """
 Description
 Returns all modified forms of a protein.
 Parms

 protein
 An instance of the class Proteins, a frame id or PFrame.
 exclude_self
 Keyword, If True, then protein will not be included in
 the return value.
 all_variants
 Keyword, If True, and protein is a modified form, then
 we return all of the modified forms of the unmodified forms
 of protein.

 Return value
 A list of instances of the class Proteins.
 """
 # Parameters exclude_self and all_variants are optionals for the Lisp fn version.
 return self.sendPgdbFnCallList('modified-forms', may_be_frameid(protein), exclude_self, all_variants)

[docs] def modified_and_unmodified_forms(self, protein):
 """
 Description
 Returns all of the modified and unmodified forms of the given
 protein.
 Parms

 protein
 An instance of the class Proteins, a frame id or PFrame.

 Return value
 A list of instances of the class Proteins.
 """
 return self.sendPgdbFnCallList('modified-and-unmodified-forms', may_be_frameid(protein))

[docs] def modified_containers(self, protein):
 """
 Description
 Returns all containers of a protein (including itself), and all
 modified forms of the containers.
 Parms

 protein
 An instance of the class Proteins, a frame id or PFrame.

 Return value
 A list of instances of the class Proteins.
 """
 return self.sendPgdbFnCallList('modified-containers', may_be_frameid(protein))

[docs] def top_containers(self, protein):
 """
 Description
 Return the top-most containers (i.e., they are not a component
 of any other protein complex) of the given protein.
 Parms

 protein
 An instance of the class Proteins, a frame id or PFrame.

 Return value
 A list of instances of the class Proteins.
 """
 return self.sendPgdbFnCallList('top-containers', may_be_frameid(protein))

[docs] def small_molecule_cplxes_of_prot(self, protein):
 """
 Description
 Return all of the forms of the given protein that are complexes
 with small molecules.
 Parms

 protein
 An instance of the class Proteins, a frame id or PFrame.

 Return value
 A list of instances of the class Proteins.
 """
 return self.sendPgdbFnCallList('small-molecule-cplxes-of-prot', may_be_frameid(protein))

[docs] def genes_of_protein(self, protein):
 """
 Description
 Given a protein, return the set of genes which encode all of the
 monomers of the protein.
 Parms

 protein
 An instance of the class Proteins, a frame id or PFrame.

 Return value
 A list of instances of the class Genes.
 """
 return self.sendPgdbFnCallList('genes-of-protein', may_be_frameid(protein))

[docs] def genes_of_proteins(self, protein):
 """
 Description
 The same as genes_of_protein, except that it takes a list of
 proteins and returns a set of genes.
 Parms

 protein
 A list of instances of the class Proteins, a frame id or PFrame.

 Return value
 A list of instances of the class Genes.
 """
 return self.sendPgdbFnCallList('genes-of-proteins', may_be_frameid(protein))

[docs] def reactions_of_enzyme(self, protein, kb=None, include_specific_forms=None):
 """
 Description
 Return all of the reactions associated with a given protein via
 enzymatic reactions.
 Parms

 protein
 An instance of the class Proteins, a frame id or PFrame.
 kb
 Keyword, The KB object of the KB in which to find
 the associated reactions. Defaults to self.
 include_specific_forms
 Keyword, When True, specific forms of associated
 generic reactions are also returned. Default value is True.

 Return value
 A list of instances of the class Reactions.
 """
 kwargs = {'kb': kb, 'include-specific-forms?': include_specific_forms}
 return self.sendPgdbFnCallList('reactions-of-enzyme', may_be_frameid(protein), **kwargs)

[docs] def species_of_protein(self, protein):
 """
 Description
 Get the associated species for the given protein.
 Parms

 protein
 A list of instances of the class Proteins, a frame id or PFrame.

 Return value
 An instance of the class Organisms, or a string.
 """
 return self.sendPgdbFnCall('species-of-protein', may_be_frameid(protein))

[docs] def enzyme_p(self, protein, type=None):
 """
 Description
 Predicate that determines whether a specified protein is an
 enzyme or not.
 Parms

 protein
 An instance of the class Proteins, a frame id or PFrame.
 type
 Keyword, Can take on one of the following values to select
 more precisely what is meant by an "enzyme":

 'any'
 Any protein that catalyzes a reaction is considered an
 enzyme.
 'chemical-change'
 If the reactants and products of the catalyzed reactin
 differ, and not just by their cellular location, then
 the protein is considered an enzyme.
 'small-molecule'
 If the reactants of the catalyzed reaction differ and
 are small molecules, then the protein is considered an
 enzyme.
 'transport'
 If the protein catalyzes a transport reaction.
 'non-transport'
 If the protein only catalyzes non-transport reactions.

 Return value
 A boolean value.
 """
 return self.sendPgdbFnCallBool('enzyme-p', may_be_frameid(protein), mkey(type))

[docs] def leader_peptide_p(self, protein):
 """
 Description
 A predicate that determines whether the given protein is a
 leader peptide.
 Parms

 protein
 An instance of the class Proteins, a frame id or PFrame.

 Return value
 A boolean value.
 """
 return self.sendPgdbFnCallBool('leader-peptide-p', may_be_frameid(protein))

[docs] def protein_p(self, frame):
 """
 Description
 A predicate that determines whether the given frame is a protein.
 Parms

 frame
 a frame id or PFrame.

 Return value
 A boolean value.
 """
 return self.sendPgdbFnCallBool('protein-p', may_be_frameid(frame))

[docs] def complex_p(self, frame):
 """
 Description
 A predicate that determines whether the given frame is a
 protein complex.
 Parms

 frame
 a frame id or PFrame.

 Return value
 A boolean value.
 """
 return self.sendPgdbFnCallBool('complex-p', may_be_frameid(frame))

[docs] def reactions_of_protein(self, protein, check_protein_components=None,
 check_protein_containers=None):
 """
 Description
 Returns all of the associated reactions that the given protein,
 or its components, catalyzes.
 Parms

 protein
 An instance of the class Proteins, a frame id or PFrame.
 check_protein_components?
 Keyword, If True, check all components of this protein for
 catalyzed reactions. Defaults to True.
 check_protein_containers?
 Keyword, If True, check the containers and modified forms
 of the protein for catalyzed reactions.

 Return value
 A list of instances of class Reactions.
 """
 return self.sendPgdbFnCallList('reactions-of-protein', may_be_frameid(protein),
 check_protein_components, check_protein_containers)

[docs] def protein_in_compartment_p(self, rxn, compartments, default_ok=None, pwy=None, loose=None):
 """
 Description
 A predicate that checks if the given reaction is present in a
 list of cellular compartments.
 Parms

 rxn
 An instance of the class Reactions, a frame id or PFrame.
 compartments
 A list of cellular compartments, as defined in the Cellular
 Components Ontology. See frame CCO.
 default_ok
 Keyword, If True, then we return True if the
 reaction has no associated compartment information, or one
 of its associated locations is a super-class of one of the
 members of the compartments parameter.
 pwy
 Keyword, a frame id or PFrame. If supplied, the search for associated
 enzymes of the parameter rxn is limited to the given child
 of Pathways.
 loose
 Keyword, If True, then the compartments
 CCO-CYTOPLASM and CCO-CYTOSOL are treated as being the
 same compartment.

 Return value
 A boolean value.
 """
 kwargs = {'default-ok?': default_ok, 'pwy': may_be_frameid(pwy), 'loose?': loose}
 return self.sendPgdbFnCallBool('protein-in-compartment-p', may_be_frameid(rxn), **kwargs)

[docs] def all_transporters_across(self, membranes=None, method=None):
 """
 Description
 Returns a list of transport proteins that transport across one
 of the given membranes.
 Parms
 membranes
 Keyword, Either all or a list of instances of the class.
 Defaults to all CCO-MEMBRANE.
 method
 Keyword,
 Either 'location' or 'reaction-compartments'. 'location'
 will check the locations slot, while
 'reaction-compartments' will examine the compartments of
 reaction substrates. Default value is 'location'.

 Return value
 A list of instances of class Proteins.
 """
 kwargs = {'membranes': may_be_frameid(membranes), 'method': method}
 return self.sendPgdbFnCallList('all-transporters-across', **kwargs)

[docs] def autocatalytic_reactions_of_enzyme(self, protein):
 """
 Description
 Returns a list of reaction frames, where the protein
 participates as a substrate of the reaction, and the reaction
 has no associated Enzymatic Reaction frame. This implies that
 the protein substrate of the reaction might autocatalyzing the
 reaction.
 Parms
 protein
 An instance frame of class Proteins, a frame id or PFrame.

 Return value
 A list of instances of class Reactions.
 """
 return self.sendPgdbFnCallList('autocatalytic-reactions-of-enzyme', may_be_frameid(protein))

[docs] def gene_p(self, item):
 """
 Description
 A predicate to determine if the given frame is a gene.
 Parms
 item
 a frame id or PFrame.

 Return value
 A boolean value.
 """
 return self.sendPgdbFnCallBool('gene-p', may_be_frameid(item))

[docs] def enzymes_of_gene(self, gene):
 """
 Description
 Collects all of the enzymes encoded by the given gene, including
 modified forms and complexes in which it is a sub-component.
 Parms
 gene
 An instance of class Genes, a frame id or PFrame.

 Return value
 A list of instances of class Proteins.
 """
 return self.sendPgdbFnCallList('enzymes-of-gene', may_be_frameid(gene))

[docs] def all_products_of_gene(self, gene):
 """
 Description
 Collects all proteins (not necessarily enzymes) that are encoded
 by the given gene.
 Parms
 gene
 An instance of class Genes, a frame id or PFrame.

 Return value
 A list of instances of class Proteins.
 """
 return self.sendPgdbFnCallList('all-products-of-gene', may_be_frameid(gene))

[docs] def reactions_of_gene(self, gene):
 """
 Description
 Returns all reactions catalyzed by enzymes encoded by the given
 gene.
 Parms
 gene
 An instance of class Genes, a frame id or PFrame.

 Return value
 A list of instances of class Reactions.
 """
 return self.sendPgdbFnCallList('reactions-of-gene', may_be_frameid(gene))

[docs] def pathways_of_gene(self, gene, include_super_pwys=None):
 """
 Description
 Returns the pathways of enzymes encoded by the given gene.
 Parms
 gene
 An instance of class Genes, a frame id or PFrame.
 include_super_pwys
 Keyword, If True, then not only will the
 direct pathways in which gene encodes an enzyme be
 returned, but also any enclosing super-pathways. If gene
 is associated with a reaction that is directly associated
 with a super-pathway, then the function might return
 super-pathways even if this option is nil.

 Return value
 A list of instances of class Pathways.
 """
 kwargs = {'include-super-pwys': include_super_pwys}
 return self.sendPgdbFnCallList('pathways-of-gene', may_be_frameid(gene), **kwargs)

[docs] def chromosome_of_gene(self, gene):
 """
 Description
 Returns the replicon on which the gene is located. If the gene
 is located on a contig that is, in turn, part of a chromosome,
 then the contig is returned.
 Parms
 gene
 An instance of class Genes, a frame id or PFrame.

 Return value
 An instance of class Genetic-Elements.
 """
 return self.sendPgdbFnCall('chromosome-of-gene', may_be_frameid(gene))

[docs] def unmodified_gene_product(self, gene):
 """
 Description
 Returns the first element of the list returned by the function
 unmodified-gene-products. This is useful if you are sure that
 there are no alternative splice forms of your gene.
 Parms
 gene
 An instance of class Genes, a frame id or PFrame.

 Return value
 An instance of either class Polypeptides or 'RNA.
 """
 return self.sendPgdbFnCall('unmodified-gene-product', may_be_frameid(gene))

[docs] def unmodified_gene_products(self, gene):
 """
 Description
 Return all of the unmodified gene products (i.e. alternative
 splice forms) of the given gene.
 Parms
 gene
 An instance of class Genes, a frame id or PFrame.

 Return value
 A list of instances of either class Polypeptides or 'RNA.
 """
 return self.sendPgdbFnCallList('unmodified-gene-products', may_be_frameid(gene))

[docs] def next_gene_on_replicon(self, gene):
 """
 Description
 Return the next gene on the replicon.
 Parms
 gene
 An instance of class Genes, a frame id or PFrame.

 Return value
 Returns two values as a list. The first value is the next gene, or nil if
 there is not a next gene (i.e., the gene is at the end of a
 linear replicon). The second value is 'last' if the gene is the
 last gene on a linear replicon.
 """
 return self.sendPgdbFnCall('next-gene-on-replicon', may_be_frameid(gene))

[docs] def previous_gene_on_replicon(self, gene):
 """
 Description
 Return the previous gene on the replicon.
 Parms
 gene
 An instance of class Genes, a frame id or PFrame.

 Return value
 Returns two values as a list. The first value is the previous gene, or nil
 if there is not a previous gene (i.e., the gene is at the
 beginning of a linear replicon). The second value is 'first' if
 the gene is the first gene on a linear replicon.
 """
 return self.sendPgdbFnCall('previous-gene-on-replicon', may_be_frameid(gene))

[docs] def adjacent_genes_p(self, g1, g2):
 """
 Description
 Given two genes, this predicate will return True if they are on
 the same replicon, and adjacent to one another.
 Parms
 g1
 An instance of class Genes, a frame id or PFrame.
 g2
 An instance of class Genes, a frame id or PFrame.

 Return value
 A boolean value.
 """
 return self.sendPgdbFnCallBool('adjacent-genes?', may_be_frameid(g1), may_be_frameid(g2))

[docs] def neighboring_genes_p(self, g1, g2, n=None):
 """
 Description
 Given two genes, this predicate determines if the two genes are
 "neighbors", or within a certain number of genes from one
 another along the replicon.
 Parms
 g1
 An instance of class Genes, a frame id or PFrame.
 g2
 An instance of class Genes, a frame id or PFrame.
 n
 Keyword, An integer representing the number of genes g1
 and g2 can be from one another. Default value is 10.

 Return value
 A boolean value.
 """
 return self.sendPgdbFnCallBool('neighboring-genes-p', may_be_frameid(g1), may_be_frameid(g2), n)

[docs] def gene_clusters(self, genes, max_gap=None):
 """
 Description
 Groups together genes based on whether each gene is a gene
 neighbor with other genes.
 Parms
 genes
 A list of instances of class Genes, a frame id or PFrame.
 max_gap
 Keyword, An integer representing the number of genes any
 pair from genes can be from one another. Default value is 10.

 Return value
 A list of lists, where the first element of each sub-list is a
 gene from genes, and the rest of the list are all of the gene
 neighbors of the first gene.
 """
 return self.sendPgdbFnCallList('gene-clusters', may_be_frameid(genes), max_gap)

[docs] def rna_coding_gene(self, gene):
 """
 Description
 A predicate that determines if the given gene encodes an RNA.
 Parms
 gene
 An instance of the class Genes, a frame id or PFrame.

 Return value
 A boolean value.
 """
 return self.sendPgdbFnCallBool('rna-coding-gene', may_be_frameid(gene))

[docs] def protein_coding_gene(self, gene):
 """
 Description
 A predicate that determines if the given gene encodes a protein
 (as opposed to an RNA).
 Parms
 gene
 An instance of the class Genes, a frame id or PFrame.

 Return value
 A boolean value.
 """
 return self.sendPgdbFnCallBool('protein-coding-gene', may_be_frameid(gene))

[docs] def pseudo_gene_p(self, gene):
 """
 Description
 A predicate that determines if the given gene is a pseudo-gene.
 Parms
 gene
 An instance of the class Genes, a frame id or PFrame.

 Return value
 A boolean value.
 """
 return self.sendPgdbFnCallBool('pseudo-gene-p', may_be_frameid(gene))

[docs] def phantom_gene_p(self, gene):
 """
 Description
 A predicate that determines if the given gene is a phantom gene.
 Parms
 gene
 An instance of the class Genes, a frame id or PFrame.

 Return value
 A boolean value.
 """
 return self.sendPgdbFnCallBool('phantom-gene-p', may_be_frameid(gene))

[docs] def dna_binding_site_p(self, gene):
 """
 Description
 A predicate that determines if the given frame is an instance of
 the class DNA-Binding-Sites.
 Parms
 gene
 A frame id or PFrame.

 Return value
 A boolean value.
 """
 return self.sendPgdbFnCallBool('dna-binding-site-p', may_be_frameid(gene))

[docs] def terminator_p(self, gene):
 """
 Description
 A predicate that determines if the given object is an instance
 of the class Terminators.
 Parms
 gene
 A frame id or PFrame.

 Return value
 A boolean value.
 """
 return self.sendPgdbFnCallBool('terminatorp', may_be_frameid(gene))

[docs] def operon_of_gene(self, gene):
 """
 Description
 Given a gene, return a list of transcription units that form the
 operon containing the gene.
 Parms
 gene
 An instance of class Genes, a frame id or PFrame

 Return value
 A list of instances of class Transcription-Units.
 """
 return self.sendPgdbFnCallList('operon-of-gene', may_be_frameid(gene))

[docs] def genes_in_same_operon(self, gene):
 """
 Description
 Given a gene, return all other genes in the same operon.
 Parms
 gene
 An instance of class Genes, a frame id or PFrame.

 Return value
 A list of instances of class Genes.
 """
 return self.sendPgdbFnCallList('genes-in-same-operon', may_be_frameid(gene))

[docs] def gene_transcription_units(self, gene):
 """
 Description
 Given a gene, return all of the transcription units which
 contain the gene.
 Parms
 gene
 An instance of class Genes, a frame id or PFrame

 Return value
 A list of instances of class Transcription-Units.
 """
 return self.sendPgdbFnCallList('gene-transcription-units', may_be_frameid(gene))

[docs] def cotranscribed_genes(self, gene):
 """
 Description
 Return all co-transcribed genes (i.e., genes which are a part of
 one or more of the same transcription units) of the given gene.
 Parms
 gene
 An instance of class Genes, a frame id or PFrame

 Return value
 A list of instances of class Genes.
 """
 return self.sendPgdbFnCallList('cotranscribed-genes', may_be_frameid(gene))

[docs] def terminators_affecting_gene(self, gene):
 """
 Description
 Find terminators in the same transcription unit and upstream of
 the given gene.
 Parms
 gene
 An instance of class Genes, a frame id or PFrame

 Return value
 A list of instances of class Terminators.
 """
 return self.sendPgdbFnCallList('terminators-affecting-gene', may_be_frameid(gene))

[docs] def chromosome_of_object(self, item):
 """
 Description
 Given a frame object, the replicon where it is located is returned.
 If there is no associated replicon for the object, nil is
 returned. If the object is on more than one replicon, an error
 is thrown.
 Parms
 item, a frame id or PFrame
 An instance of class All-Genes, Transcription-Units,
 Promoters, Terminators, Misc-Features, or
 DNA-Binding-Sites.

 Return value
 An instance of class Genetic-Elements.
 """
 return self.sendPgdbFnCall('chromosome-of-object', may_be_frameid(item))

[docs] def activation_p(self, reg_frame):
 """
 Description
 A predicate that determines if a given regulation frame is
 describing activation.
 Parms
 reg_frame
 An instance of class Regulation, a frame id or PFrame

 Return value
 A boolean value.
 """
 return self.sendPgdbFnCallBool('activation-p', may_be_frameid(reg_frame))

[docs] def inhibition_p(self, reg_frame):
 """
 Description
 A predicate that determines if a given regulation frame is
 describing inhibition.
 Parms
 reg_frame
 An instance of class Regulation, a frame id or PFrame

 Return value
 A boolean value.
 """
 return self.sendPgdbFnCallBool('inhibition-p', may_be_frameid(reg_frame))

[docs] def direct_regulators(self, item, filter_fn=None):
 """
 Description
 Return all regulators that are connected to a regulated object
 by a single regulation object.
 Parms
 item
 A frame id or PFrame.
 filter_fn
 Keyword, A predicate used to filter the regulation objects
 used to find the regulators.

 Return value
 A list of frames that regulate item.
 """
 kwargs = {'filter-fn': filter_fn}
 return self.sendPgdbFnCallList('direct-regulators', may_be_frameid(item), **kwargs)

[docs] def direct_activators(self, item):
 """
 Description
 Return all activators that are connected to an activated object
 by a single regulation object.
 Parms
 item
 A frame id or PFrame.

 Return value
 A list of frames that activate item.
 """
 return self.sendPgdbFnCallList('direct-activators', may_be_frameid(item))

[docs] def direct_inhibitors(self, item):
 """
 Description
 Return all inhibitors that are connected to an inhibited object
 by a single regulation object.
 Parms
 item
 A frame id or PFrame.

 Return value
 A list of frames that inhibit item.
 """
 return self.sendPgdbFnCallList('direct-inhibitors', may_be_frameid(item))

[docs] def transcription_factor_p(self, protein, include_inactive=None):
 """
 Description
 A predicate that determines if the given protein is a
 transcription factor, or a component of a transcription factor.
 Parms
 protein
 An instance frame of class Proteins, a frame id or PFrame.
 include_inactive
 Keyword, If True, then the function checks to see
 if any of its components or containers is a transcription
 factor as well.

 Return value
 A boolean value.
 """
 kwargs = {'include-inactive?': include_inactive}
 return self.sendPgdbFnCallBool('transcription-factor-p', may_be_frameid(protein), **kwargs)

[docs] def regulator_of_type(self, protein, class_name):
 """
 Description
 A predicate that determines if the given protein is a regulator
 of the specified class.
 Parms
 protein
 An instance frame of class Proteins, a frame id or PFrame.
 class
 A subclass of Regulation.

 Return value
 A boolean value.
 """
 return self.sendPgdbFnCallBool('regulator-of-type', may_be_frameid(protein), class_name)

[docs] def regulon_of_protein(self, protein):
 """
 Description
 Returns all transcription units regulated by any form of the
 given protein.
 Parms
 protein
 An instance frame of class Proteins, a frame id or PFrame.

 Return value
 A list of instances of the class Transcription-Units.
 """
 return self.sendPgdbFnCallList('regulon-of-protein', may_be_frameid(protein))

[docs] def regulation_frame_transcription_units(self, reg_frame):
 """
 Description
 Given a regulation object, return the transcription units when
 one of the regulated entities is a promoter or terminator of the
 transcription unit.
 Parms
 reg_frame
 An instance of the class Regulation-of-Transcription, a frame id or PFrame.

 Return value
 A list of instances of the class Transcription-Units.
 """
 return self.sendPgdbFnCallList('regulation-frame-transcription-units', may_be_frameid(reg_frame))

[docs] def transcription_unit_regulation_frames(self, tu):
 """
 Description
 Returns a list of regulation frames that regulate the
 transcription unit.
 Parms
 tu
 An instance of the class Transcription-Units, a frame id or PFrame.

 Return value
 A list of instances of the class Regulation.
 """
 return self.sendPgdbFnCallList('transcription-unit-regulation-frames', may_be_frameid(tu))

[docs] def transcription_unit_activation_frames(self, tu):
 """
 Description
 Returns a list of regulation frames that activate the
 transcription unit.
 Parms
 tu
 An instance of the class Transcription-Units, a frame id or PFrame.

 Return value
 A list of instances of the class Regulation.
 """
 return self.sendPgdbFnCallList('transcription-unit-activation-frames', may_be_frameid(tu))

[docs] def transcription_unit_inhibition_frames(self, tu):
 """
 Description
 Returns a list of regulation frames that inhibit the
 transcription unit.
 Parms
 tu
 An instance of the class Transcription-Units, a frame id or PFrame.

 Return value
 A list of instances of the class Regulation.
 """
 return self.sendPgdbFnCallList('transcription-unit-inhibition-frames', may_be_frameid(tu))

[docs] def transcription_units_of_protein(self, protein):
 """
 Description
 Return all of the transcription units for which the given
 protein, or its modified form, acts as a regulator.
 Parms
 protein
 An instance of the class Proteins, a frame id or PFrame.

 Return value
 A list of instances of the class Transcription-Units.
 """
 return self.sendPgdbFnCallList('transcription-units-of-protein', may_be_frameid(protein))

[docs] def genes_regulated_by_protein(self, protein):
 """
 Description
 Return all of the genes for which the given protein, or its
 modified form, acts as a regulator.
 Parms
 protein
 An instance of the class Proteins, a frame id or PFrame.

 Return value
 A list of instances of the class Genes.
 """
 return self.sendPgdbFnCallList('genes-regulated-by-protein', may_be_frameid(protein))

[docs] def DNA_binding_sites_of_protein(self, tf, all_forms=None):
 """
 Description
 Given a transcription factor, return all of its DNA binding sites.
 Parms
 tf
 An instance of the class Proteins, a frame id or PFrame.
 all_forms
 Keyword, When True, then return the DNA binding
 sites of modified forms and subunits of tf as well.

 Return value
 A list of instances of the class DNA-Binding-Sites.
 """
 kwargs = {'all-forms?': all_forms}
 return self.sendPgdbFnCallList('DNA-binding-sites-of-protein', may_be_frameid(tf), **kwargs)

[docs] def regulator_proteins_of_transcription_unit(self, tu):
 """
 Description
 Returns all transcription factors that regulate the given
 transcription unit.
 Parms
 tu
 An instance of the class Transcription-Units, a frame id or PFrame.

 Return value
 A list of instances of the class Proteins.
 """
 return self.sendPgdbFnCallList('regulator-proteins-of-transcription-unit', may_be_frameid(tu))

[docs] def transcription_factor_ligands(self, tfs, mode):
 """
 Description
 For a single transcription factor or list of transcription
 factors, return all transcription factor ligands.
 Parms
 tfs, a frame id or PFrame or a list of these.
 An instance or a list of instances of the class
 Proteins. If tfs is not the active form, then the
 active form is determined automatically.
 mode
 One of the following values: 'activator', 'inhibitor', or
 'both'.

 Return value
 A list of instances of the class Chemicals or strings.
 """
 return self.sendPgdbFnCallList('transcription-factor-ligands', may_be_frameid(tfs), mkey(mode))

[docs] def transcription_factor_active_forms(self, tfs):
 """
 Description
 For a given transcription factor, find all active forms (i.e,
 form of the protein that regulates) of the transcription factor.
 Parms
 tfs, a frame id or PFrame.
 An instance of the class Proteins.

 Return value
 A list of instances of the class Proteins.
 """
 return self.sendPgdbFnCallList('transcription-factor-active-forms', may_be_frameid(tfs))

[docs] def genes_regulating_gene(self, gene):
 """
 Description
 Return all genes regulating the given gene by means of a
 transcription factor.
 Parms
 gene
 An instance of the class Genes, a frame id or PFrame.

 Return value
 A list of instances of class Genes.
 """
 return self.sendPgdbFnCallList('genes-regulating-gene', may_be_frameid(gene))

[docs] def genes_regulated_by_gene(self, gene):
 """
 Description
 Return all genes regulated by the given gene by means of a
 transcription factor.
 Parms
 gene
 An instance of the class Genes, a frame id or PFrame.

 Return value
 A list of instances of class Genes.
 """
 return self.sendPgdbFnCallList('genes-regulated-by-gene', may_be_frameid(gene))

[docs] def regulators_of_gene_transcription(self, gene, by_function=None):
 """
 Description
 Returns a list of proteins that are regulators of the given gene.
 Parms
 gene
 An instance of the class Genes, a frame id or PFrame.
 by_function
 Keyword, If True, then return two values: a list of
 activator proteins and a list of inhibitor proteins.

 Return value
 A list of instances of class Proteins. If by_function is
 True, then two values are returned. The first value is a list
 of activator proteins, and the second value is a list of
 inhibitor proteins.
 """
 kwargs = {'by-function?' : by_function}
 return self.sendPgdbFnCall('regulators-of-gene', may_be_frameid(gene), **kwargs)

[docs] def transcription_unit_activators(self, tu):
 """
 Description
 Returns all activator proteins of the given transcription unit.
 Parms
 tu
 An instance of the class Transcription-Units, a frame id or PFrame.

 Return value
 A list of instances of class Proteins.
 """
 return self.sendPgdbFnCallList('transcription-unit-activators', may_be_frameid(tu))

[docs] def transcription_unit_inhibitors(self, tu):
 """
 Description
 Returns all inhibitor proteins of the given transcription unit.
 Parms
 tu
 An instance of the class Transcription-Units, a frame id or PFrame.

 Return value
 A list of instances of class Proteins.
 """
 return self.sendPgdbFnCallList('transcription-unit-inhibitors', may_be_frameid(tu))

[docs] def regulators_of_operon_transcription(self, operon_list, by_function=None):
 """
 Description
 Returns a list of transcription factors of an operon.
 Parms
 operon_list
 A list of instances of the class Transcription-Units, a frame id or PFrame.
 by_function
 Keyword, If True, then return two values: a list of
 activator proteins and a list of inhibitor proteins.

 Return value
 A list of instances of class Proteins. If the modified form
 of the protein is the transcription factor, then that is the
 protein returned.
 """
 # Parameter by_function is optional for the Lisp fn.
 return self.sendPgdbFnCallList('regulators-of-operon-transcription', may_be_frameid(operon_list), by_function)

[docs] def transcription_unit_promoter(self, tu):
 """
 Description
 Returns the promoter of the given transcription unit.
 Parms
 tu
 An instance of the class Transcription-Units, a frame id or PFrame.

 Return value
 An instance of class Promoters.
 """
 return self.sendPgdbFnCall('transcription-unit-promoter', may_be_frameid(tu))

[docs] def transcription_unit_genes(self, tu):
 """
 Description
 Returns the genes of the given transcription unit.
 Parms
 tu
 An instance of the class Transcription-Units, a frame id or PFrame.

 Return value
 A list of instances of class Genes.
 """
 return self.sendPgdbFnCallList('transcription-unit-genes', may_be_frameid(tu))

[docs] def transcription_unit_first_gene(self, tu):
 """
 Description
 Returns the first gene of the given transcription unit.
 Parms
 tu
 An instance of the class Transcription-Units, a frame id or PFrame.

 Return value
 An instance of class Genes.
 """
 return self.sendPgdbFnCall('transcription-unit-first-gene', may_be_frameid(tu))

[docs] def transcription_unit_binding_sites(self, tu):
 """
 Description
 Returns the binding sites of the given transcription unit.
 Parms
 tu
 An instance of the class Transcription-Units, a frame id or PFrame.

 Return value
 A list of instances of class DNA-Binding-Sites.
 """
 return self.sendPgdbFnCallList('transcription-unit-binding-sites', may_be_frameid(tu))

[docs] def transcription_unit_transcription_factors(self, tu):
 """
 Description
 Returns the binding sites of the given transcription unit.
 Parms
 tu
 An instance of the class Transcription-Units, a frame id or PFrame.

 Return value
 A list of instances of class DNA-Binding-Sites.
 """
 return self.sendPgdbFnCallList('transcription-unit-transcription-factors', may_be_frameid(tu))

[docs] def transcription_unit_mrna_binding_sites(self, tu):
 """
 Description
 Returns the mRNA binding sites of the given transcription unit.
 Parms
 tu
 An instance of the class Transcription-Units, a frame id or PFrame.

 Return value
 A list of instances of class mRNA-Binding-Sites.
 """
 return self.sendPgdbFnCallList('transcription-unit-mrna-binding-sites', may_be_frameid(tu))

[docs] def chromosome_of_operon(self, tu):
 """
 Description
 Returns the replicon of the given transcription unit.
 Parms
 tu
 An instance of the class Transcription-Units, a frame id or PFrame.

 Return value
 An instance of class Genetic-Elements.
 """
 return self.sendPgdbFnCall('chromosome-of-operon', may_be_frameid(tu))

[docs] def binding_sites_affecting_gene(self, gene):
 """
 Description
 Returns all binding sites which are present in the same
 transcription units as the given gene.
 Parms
 gene
 An instance of the class Genes, a frame id or PFrame.

 Return value
 A list of instances of class DNA-Binding-Sites.
 """
 return self.sendPgdbFnCallList('binding-sites-affecting-gene', may_be_frameid(gene))

[docs] def binding_site_to_regulators(self, bsite):
 """
 Description
 Returns all of the transcription factors of the given binding site.
 Parms
 bsite
 An instance of class DNA-Binding-Sites, a frame id or PFrame.

 Return value
 A list of instances of class Proteins.
 """
 return self.sendPgdbFnCallList('binding-site->regulators', may_be_frameid(bsite))

[docs] def transcription_units_of_promoter(self, promoter):
 """
 Description
 Returns all transcription units of a given promoter.
 Parms
 promoter
 An instance of class Promoters, a frame id or PFrame.

 Return value
 A list of instances of class Transcription-Units.
 """
 return self.sendPgdbFnCallList('transcription-units-of-promoter', may_be_frameid(promoter))

[docs] def promoter_binding_sites(self, promoter):
 """
 Description
 Returns all of the binding sites associated with the given
 promoter, across multiple transcription units.
 Parms
 promoter
 An instance of class Promoters, a frame id or PFrame.

 Return value
 A list of instances of class DNA-Binding-Sites.
 """
 return self.sendPgdbFnCallList('promoter-binding-sites', may_be_frameid(promoter))

[docs] def transcription_unit_terminators(self, operon):
 """
 Description
 Returns the terminators of the given transcription unit.
 Parms
 operon
 An instance of the class Transcription-Units, a frame id or PFrame.

 Return value
 A list of instances of class Terminators.
 """
 return self.sendPgdbFnCallList('transcription-unit-terminators', may_be_frameid(operon))

[docs] def containing_tus(self, site):
 """
 Description
 Given a site (whether a DNA binding site, a promoter, a gene, or
 a terminator) along a transcription unit, return the
 correspodning transcription units.
 Parms
 site, a frame id or PFrame.
 An instance of class Transcription-Units,
 mRNA-Binding-Sites, DNA-Binding-Sites,
 Promoters, Genes, or Terminators.

 Return value
 A list of instances of class Transcription-Units.
 """
 return self.sendPgdbFnCallList('containing-tus', may_be_frameid(site))

[docs] def containing_chromosome(self, site):
 """
 Description
 Given a site (whether a DNA binding site, a promoter, a gene, or
 a terminator) along a transcription unit, return the
 correspodning regulon.
 Parms
 site, a frame id or PFrame.
 An instance of class Transcription-Units,
 mRNA-Binding-Sites, DNA-Binding-Sites,
 Promoters, Genes, or Terminators.

 Return value
 An instance of class Genetic-Elements.
 """
 return self.sendPgdbFnCall('containing-chromosome', may_be_frameid(site))

[docs] def binding_site_promoters(self, tu):
 """
 Description
 Returns the promoters of the given DNA binding site.
 Parms
 tu
 An instance of the class DNA-Binding-Sites, a frame id or PFrame.

 Return value
 A list of instances of class Promoters.
 """
 return self.sendPgdbFnCallList('binding-site-promoters', may_be_frameid(tu))

[docs] def transcription_unit_all_components(self, tu):
 """
 Description
 Returns all components (binding sites, promoters, genes,
 terminators) of the given transcription unit.
 Parms
 tu
 An instance of the class Transcription-Units, a frame id or PFrame.

 Return value
 A list of instances of class Transcription-Units,
 mRNA-Binding-Sites, DNA-Binding-Sites, Promoters,
 Genes, or Terminators.
 """
 return self.sendPgdbFnCallList('transcription-unit-all-components', may_be_frameid(tu))

[docs] def binding_site_transcription_units(self, promoter):
 """
 Description
 Returns all transcription units of a given binding site.
 Parms
 promoter, a frame id or PFrame.
 An instance of class DNA-Binding-Sites or
 mRNA-Binding-Sites.

 Return value
 A list of instances of class Transcription-Units.
 """
 return self.sendPgdbFnCallList('binding-site-transcription-units', may_be_frameid(promoter))

[docs] def reactions_of_compound(self, cpd, non_specific_too=None,transport_only=None,compartment=None,enzymatic=None):
 """
 Description
 Return all reactions in which the given compound participates as
 a substrate.
 Parms
 cpd, a frame id or PFrame.
 A child of class Compounds.
 non_specific_too
 Keyword, If True, returns all generic
 reactions where cpd, or a parent of cpd, appears as a
 substrate.
 transport_only
 Keyword, If True, return only transport reactions.
 compartment
 Keyword, If True, return only reactions within
 the specified compartment.
 enzymatic
 Keyword, If True, return only enzymatic reactions.

 Return value
 A list of children of class Reactions.
 """
 kwargs = {'non-specific-too?': non_specific_too,
 'transport-only?': transport_only,
 'compartment': compartment,
 'enzymatic?': enzymatic }
 return self.sendPgdbFnCallList('reactions-of-compound', may_be_frameid(cpd), **kwargs)

[docs] def substrate_of_generic_rxn(self, cpd, rxn):
 """
 Description
 A predicate that determines if a parent of the given compound is
 a substrate of the given generic reaction.
 Parms
 cpd
 An instance of class Compounds, a frame id or PFrame.
 rxn
 An instance of class Reactions, a frame id or PFrame.

 Return value
 A boolean value.
 """
 return self.sendPgdbFnCallBool('substrate-of-generic-rxn', may_be_frameid(cpd), may_be_frameid(rxn))

[docs] def pathways_of_compound(self, cpd, non_specific_too=None, modulators=None, phys_relevant=None, include_rxns=None):
 """
 Description
 Returns all pathways in which the given compound appears as a
 substrate.
 Parms
 cpd
 An instance of class Compounds, a frame id or PFrame.
 non-specific_too
 Keyword, If True, returns all generic
 reactions where cpd, or a parent of cpd, appears as a
 substrate.
 modulators
 Keyword, If True, returns pathways where cpd
 appears as a regulator as well.
 phys-relevant
 Keyword, If True, then only return inhibitors
 that are associated with Regulation instances that have
 the physiologically-relevant? slot set to True.
 include-rxns
 Keyword, If True, then return a list of
 reaction-pathway pairs.

 Return value
 A list of instances of class Pathways. If include-rxns? is
 True, then a list of lists, where each sub-list consists of
 an instance of class Reactions and an instance of class
 Pathways.
 """
 kwargs = {'non-specific-too?': non_specific_too,
 'modulators?': modulators,
 'phys-relevant?': phys_relevant,
 'include-rxns?': include_rxns }
 return self.sendPgdbFnCallList('pathways-of-compound', may_be_frameid(cpd), **kwargs)

[docs] def deactivated_or_inhibited_by_compound(self, cpds, mode=None, mechanisms=None, phys_relevant=None, slots=None):
 """
 Description
 Returns all pathways in which the given compound appears as a
 substrate.
 Parms
 cpds
 An instance or list of instances of class Compounds, a frame id or PFrame.
 mode
 Keyword, Represents the type of regulation. Can
 take on the values of "+", "-", or None.
 mechanisms
 Keyword, Keywords from the mechanism slot of
 the corresponding sub-class of the class Regulation. If
 True, only regulation objects with mechanisms in this
 list will be explored for regulated objects.
 phys_relevant
 Keyword, If True, then only return inhibitors
 that are associated with Regulation instances that have
 the physiologically-relevant? slot set to True.
 slots
 Keyword, A list of enzymatic reaction slots.

 Return value
 A list of instances of class Enzymatic-Reactions.
 """
 kwargs = {'mode': mode,
 'mechanisms': mechanisms,
 'phys-relevant?': phys_relevant,
 'slots': slots }
 return self.sendPgdbFnCallList('deactivated-or-inhibited-by-compound', may_be_frameid(cpds), **kwargs)

[docs] def tfs_bound_to_compound(self, cpd, include_inactive=None):
 """
 Description
 Returns a list of protein complexes that, when bound to the
 given compound, act as a transcription factor.
 Parms
 cpd
 An instance of class Compounds, a frame id or PFrame.
 include_inactive
 Keyword, If True, then the inactive form of
 the protein is also checked. See the function
 transcription-factor? for more information.

 Return value
 A list of instances of class Proteins.
 """
 kwargs = {'include-inactive?': include_inactive}
 return self.sendPgdbFnCallList('tfs-bound-to-compound', may_be_frameid(cpd), **kwargs)

[docs] def get_name_string(self, item, rxn_eqn_as_name=None, rxn_common_name_as_name=None,
 direction=None, name_slot=None, strip_html=None,
 include_species_strain_name=None,
 italicize_species=None, short_name=None,
 species_initials=None, primary_class=None):
 """
 Description
 Given an object, compute the string name. The method used to
 compute the name varies per the object class.
 Parms
 item
 A frame id or PFrame.
 rxn_eqn_as_name
 Keyword, If True, then we use the reaction
 equation in string form as the name of the reaction.
 Defaults to True.
 rxn_common_name_as_name
 Keyword, If True, then we use the reaction's
 common name as the name of the reaction.
 direction
 Keyword, An argument of 'l2r' or 'r2l' can be
 given to specify the desired reaction orientiation when
 printed in reaction equation form. If this is not provided,
 then the reaction direction will be determined using pathway
 evidence.
 name_slot
 Keyword, The specified slotunit frame name, as a
 symbol, will be used for extracting the name of the frame.
 strip_html
 Keyword, Remove any HTML mark-up from the string
 form of the object name.
 include_species_strain_name
 Keyword, Provide proper italicization for the
 organism strain name.
 italicize_species
 Keyword, Provide proper italicization for the
 organism species name.
 short_name
 Keyword, If the ABBREV-NAME slot is populated
 for the frame, then its value will be used.
 species_initials
 Keyword, Print the name of the organism as initials.
 primary_class
 Keyword, Specify explicitly the primary class of
 the given frame. This can be used to override the internal
 reasoning of this function, and you can give a suggestion to
 the function to treat the frame as another class.

 Return value
 A string representing the name of the frame.
 """
 kwargs = {'rxn-eqn-as-name': rxn_eqn_as_name,
 'rxn-common-name-as-name': rxn_common_name_as_name,
 'direction': direction,
 'name-slot': name_slot,
 'strip-html?': strip_html,
 'include-species-strain-name?': include_species_strain_name,
 'italicize-species?': italicize_species,
 'short-name?': short_name,
 'species-initials': species_initials,
 'primary-class': Symbol(primary_class)}
 return self.sendPgdbFnCall('get-name-string', may_be_frameid(item), **kwargs)

[docs] def full_enzyme_name(self, enzyme, use_frame_name=None, name=None, activity_names=None):
 """
 Description
 Compute the full name of an enzyme as the concatenation of the
 common name of the protein followed by the common names of its
 enzymatic reactions. Note that two enzrxns for the same enzyme
 could have the same common name, so we avoid including the same
 name twice.
 Parms
 enzyme
 An instance of the class Proteins, that is, a frame id or a PFrame.
 use_frame_name
 Keyword, If True, then the frameid of the enzyme
 instance is used in computing the enzyme name. Defaults to
 True.
 name
 Keyword, A string that bypasses the function, and will be
 returned as the value of the function.
 activity_names
 Keyword, A provided list of strings, that represent the
 names of the known catalytic activities of enzyme.

 Return value
 A string.
 """
 # Parameters use_frame_name, name and activity_names are optional for the Lisp fn version.
 return self.sendPgdbFnCall('full-enzyme-name', may_be_frameid(enzyme), use_frame_name,
 name, activity_names)

[docs] def enzyme_activity_name(self, enzyme, reaction=None):
 """
 Description
 Computes the name of an enzyme in the context of a particular
 reaction. If the reaction is not provided, then we return the
 full enzyme name.

 Parms
 enzyme
 An instance of the class Proteins, that is, a frame id or a PFrame.
 reaction
 Keyword, An instance of the class Reactions.

 Return value
 A string.
 """
 # Parameter reaction is optional for the Lisp fn version.
 return self.sendPgdbFnCall('enzyme-activity-name', may_be_frameid(enzyme), may_be_frameid(reaction))

 © Copyright 2014, SRI International.
 Created using Sphinx 1.3.5.

_modules/pythoncyc.html

 Navigation

 		
 index

 		
 modules |

 		pythoncyc documentation »

 		Module code »

 Source code for pythoncyc

Copyright (c) 2014, SRI International

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
--

"""
This module is part of PythonCyc, a Python interface module to Pathway Tools.
This code has been tested with Python 2.6.

Pathway Tools (version 18.5 and up) must be running on some machine
with at least the option '-python'. It is also recommended
to start Pathway Tools with the option -lisp, so that the
connection can be monitored:

./pathway-tools -lisp -python

The global functions defined in this init file can be called before any
PGDB (an organism database in Pathway Tools) has been selected.
In fact, two of these functions, select_organism and
its synonym so, are needed to "select" a PGDB by creating a PGDB object.
See class PGDB in PGDB.py for information about how to use a PGDB object.

Please consult the tutorial.html file, under directory doc, for more information
about how to use PythonCyc.
"""

from PGDB import PGDB
from PTools import sendQueryToPTools

[docs]def select_organism(orgid):
 """
 Select an organism PGDB based on its unique organism id.
 orgid: string, the unique organism id in Pathway Tools (e.g., ecoli, meta).
 """
 return PGDB(orgid)

[docs]def so(orgid):
 """ A synonym of method select_organism. """
 return select_organism(orgid)

[docs]def all_orgids():
 """
 Returns all organism unique ids (orgids) available
 from the current running Pathway Tools.
 """
 orgids = sendQueryToPTools('(all-orgids)')
 return orgids

[docs]def biovelo(query):
 """
 Execute a BioVelo query and return the result.

 Parameters
 query: a string, which is a BioVelo query.
 Returns
 Whatever the BioVelo query computes.

 Example
 bv('[(p, reactions-of-pathway(p)): p<-ecoli^^pathways]')
 """
 return sendQueryToPTools('(biovelo "'+query+'")')

[docs]def bv(query):
 """
 A synonym of method biovelo.
 """
 return biovelo(query)

[docs]def run_fba(fileName):
 """
 The function run_fba does not need to have an organism selected before
 being used because the FBA input file provided as input can specify
 the organism.

 For the documentation of this function, see method run_fba
 in file PGDB.py.
 """
 return sendQueryToPTools('(python-run-fba "'+fileName+'")')

 © Copyright 2014, SRI International.
 Created using Sphinx 1.3.5.

_modules/pythoncyc/config.html

 Navigation

 		
 index

 		
 modules |

 		pythoncyc documentation »

 		Module code »

 		pythoncyc »

 Source code for pythoncyc.config

Copyright (c) 2014, SRI International

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
--

"""
This module can be used to set various parameters for PythonCyc,
in particular to set debug on or off, the host name and port number
of the running Pathway Tools' Python server. By default, the Pathway Tools
Python server is running locally on port 5008.
"""

_debug = False
_hostname = "localhost"
_hostport = 5008

[docs]def set_debug_on():
 """
 Turn on debug mode for PythonCyc.
 Turning on debugging should turn on output tracings of the communications between PythonCyc and Pathway Tools.
 """
 global _debug
 _debug = True
 print 'Debug on.'

[docs]def set_debug_off():
 """
 Turn off debug mode for PythonCyc.
 Turning off debugging should turn off all output tracings of the communications between PythonCyc and Pathway Tools.

 """
 global _debug
 _debug = False
 print 'Debug off.'

[docs]def set_host_name(hostname):
 global _hostname
 _hostname = hostname
 print 'PythonCyc will communicate with Pathway Tools running on host name ',_hostname

[docs]def set_host_port(hostport):
 global _hostport
 _hostport = hostport
 print 'PythonCyc will communicate with Pathway Tools running on host port ',_hostport

 © Copyright 2014, SRI International.
 Created using Sphinx 1.3.5.

_modules/pythoncyc/PTools.html

 Navigation

 		
 index

 		
 modules |

 		pythoncyc documentation »

 		Module code »

 		pythoncyc »

 Source code for pythoncyc.PTools

Copyright (c) 2014, SRI International

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
--

"""
This module handles basic operations for receiving and sending messages via a
network socket to Pathway Tools.

No major class is defined in this file, but only toplevel functions and
some simple classes for errors handling.

"""

import os
import sys
import socket as so
import json
import time
import config

[docs]def recvAll(s):
 """
 Receive the entire message sent by Pathway Tools on socket s.
 The message starts with a single character type, which is either 'A'
 or 'L'. The 'A' time is used without providing a length but can take
 longer to receive because it uses a timeout technique to read the entire
 message. The 'L' type assumes that the length of the message, in characters,
 is given on the next 10 characters as an integer. The message length is the
 number of characters after these 10 characters.

 Parm
 s, an open network socket.
 Return
 the message received on socket s as a string.
 """

 if config._debug:
 print 'recvAll ...'
 # Get the type of message which is one character long.
 type = s.recv(1)
 # print "type ", type
 if type == 'A':
 # The length of the message is not given, use time out approach.
 return recvTimeOut(s)
 elif type == 'L':
 # The next 10 characters give the length.
 lengthMsg = int(recvFixedLength(s, 10))
 if config._debug:
 print "lengthMsg ", lengthMsg
 return recvFixedLength(s, lengthMsg)
 else:
 # Something is broken on the server side, so
 # use recv with a long timeout to try flushing
 # the sent message.
 return recvTimeOut(s, timeOut=5)

[docs]def sendAll(s, query):
 sent_len = 0
 query_len = len(query)
 while sent_len < query_len:
 nb_chars = s.send(query[sent_len:])
 if nb_chars == 0:
 raise PythonCycError("Connection to Pathway Tools broke while sending query %s." % query)
 sent_len = sent_len + nb_chars

[docs]def recvFixedLength(s, lengthMsg):
 """
 Receive a fixed length message on socket s.
 Parm
 lengthMsg, an integer, which is the length in characters of the
 message to receive.
 Return
 the message received as a string.
 """
 pieces = []
 nbBytesRecv = 0
 while nbBytesRecv < lengthMsg:
 piece = s.recv(min(lengthMsg - nbBytesRecv, 4096))
 if piece == '':
 # Give up now because nothing was received.
 return ''.join(pieces)
 pieces.append(piece)
 nbBytesRecv = nbBytesRecv + len(piece)
 # print 'Fixed receive: ', ''.join(pieces)
 return ''.join(pieces)

[docs]def recvTimeOut(socket, timeOut=2):
 """
 Receive a message of unknown length on socket. While receiving a message, if no
 more characters are sent on socket after timeOut seconds, it is
 assumed that the message has ended. Therefore, it will always, whatever the lenght
 of the message, take at least timeOut seconds to execute this method. If no character
 is received after 60 seconds, this method returns with an empty message.

 Parms
 socket, an open network socket.
 timeOut, number of seconds before timing out between fragments of the received
 message.
 Return
 The received message, as a string, on socket.
 """
 # Keep each received packet in an array.
 pieces = []
 # Keep track of time between recvs.
 begin = time.time()
 while 1:
 # If we started to get data and the timeOut occurs,
 # we assume that Pathway Tools sent everything.
 if pieces and time.time() - begin > timeOut:
 break
 elif time.time() - begin > 60:
 break
 # Try to receive some text.
 try:
 data = socket.recv(4096)
 if data:
 pieces.append(data)
 # Reset beginning time for next recv.
 begin = time.time()
 else:
 # Slow down in case timeOut is small.
 time.sleep(0.1)
 except so.error:
 pass

 # Join all the pieces together.
 if pieces == []:
 return None
 else:
 return ''.join(pieces)

Call a PTools function synchronously for any PGDB.
[docs]def sendQueryToPTools(query):
 """
 Send a query to a running Pathway Tools application via a socket.

 Parm
 query, a string that the Python server in Pathway Tools can evaluate.
 Returns
 The result of the query, as a Python object, decoded by Json.
 """
 if config._debug:
 print 'Sending query '+query
 if config._hostname == '':
 raise PToolsError('The hostname to connect to a running Pathway Tools has not been set. Use function config.set_hostname() to set the host name of your running Pathway Tools.')
 try:
 s = so.socket(so.AF_INET, so.SOCK_STREAM)
 # Make socket non blocking.
 s.setblocking(0)
 s.settimeout(360) # The query may take a long time in some cases.
 s.connect((config._hostname,config._hostport))
 except so.error, msg:
 raise PToolsError('Failed to create a connection to a running Pathway Tools at '+ config._hostname+ ' on port '+ str(config._hostport)+'. Make sure Pathway Tools is running with option -python. Error code: '+str(msg[0])+', error message: '+ msg[1])
 # Send, receive and close socket.
 sendAll(s,query)
 if config._debug:
 print 'Sent '+query+' to Pathway Tools.'
 response = recvAll(s)
 if config._debug and len(response) < 4000:
 print 'JSON Received: ', response
 r = json.loads(response)
 s.close()
 if isinstance(r,basestring) and r.startswith(':error'):
 raise PToolsError('An internal error occurred in the running Pathway Tools application: %s' % r)
 else:
 # Return some result.
 return r

[docs]class PythonCycError(Exception):
 """Error generated by one of the module of PythonCyc due to an incorrect
 use of its methods or functions.
 """
 pass

[docs]class PToolsError(Exception):
 """Error generated when Pathway Tools send an error due to its own Lisp execution."""
 pass

 © Copyright 2014, SRI International.
 Created using Sphinx 1.3.5.

_static/down-pressed.png

_static/up-pressed.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		pythoncyc documentation »

 All modules for which code is available

		pythoncyc

		pythoncyc.PGDB

		pythoncyc.PTools

		pythoncyc.PToolsFrame

		pythoncyc.config

 © Copyright 2014, SRI International.
 Created using Sphinx 1.3.5.

_static/down.png

_static/up.png

